Integrative molecular and physiological insights into the phytotoxic impact of liquid crystal monomer exposure and the protective strategy in plants

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Dong Jiang, Guoqun Yang, Li-Jun Huang, Xia Peng, Chuantong Cui, Yakov Kuzyakov, Ning Li
{"title":"Integrative molecular and physiological insights into the phytotoxic impact of liquid crystal monomer exposure and the protective strategy in plants","authors":"Dong Jiang, Guoqun Yang, Li-Jun Huang, Xia Peng, Chuantong Cui, Yakov Kuzyakov, Ning Li","doi":"10.1111/pbi.14526","DOIUrl":null,"url":null,"abstract":"Liquid crystal monomers (LCMs), the integral components in the manufacture of digital displays, have engendered environmental concerns due to extensive utilization and intensive emission. Despite their prevalence and ecotoxicity, the LCM impacts on plant growth and agricultural yield remain inadequately understood. In this study, we investigated the specific response mechanisms of tobacco, a pivotal agricultural crop and model plant, to four representative LCMs (2OdF3B, 5CB, 4PiMeOP, 2BzoCP) through integrative molecular and physiological approaches. The findings reveal specific impacts, with 4PiMeOP exerting the most pronounced effects, followed by 2BzoCP, 5CB, and 2OdF3B. LCM exposure disrupts the photosynthetic apparatus, exacerbating reactive oxygen species (ROS) levels in leaves, which in turn triggers the upregulation of antioxidative enzymes and the synthesis of antioxidant substances. Additionally, LCMs strongly stimulate the expression of genes involved in abscisic acid (ABA) biosynthesis and signalling pathways. The AI-assisted meta-analysis implicates ABA as a critical regulator in the tobacco response to LCMs. Notably, exogenous application of ABA alleviates LCM-induced toxicities, highlighting the pivotal role of ABA in stress amelioration. Our study provides novel insights into the toxicity and tolerance mechanisms of LCMs in plants, shedding light on both their harmful effects on the ecosystems and potential adaptation responses. This is crucial to develop sustainable agricultural systems by reducing the negative environmental impacts caused by emerging organic pollutants.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"6 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14526","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid crystal monomers (LCMs), the integral components in the manufacture of digital displays, have engendered environmental concerns due to extensive utilization and intensive emission. Despite their prevalence and ecotoxicity, the LCM impacts on plant growth and agricultural yield remain inadequately understood. In this study, we investigated the specific response mechanisms of tobacco, a pivotal agricultural crop and model plant, to four representative LCMs (2OdF3B, 5CB, 4PiMeOP, 2BzoCP) through integrative molecular and physiological approaches. The findings reveal specific impacts, with 4PiMeOP exerting the most pronounced effects, followed by 2BzoCP, 5CB, and 2OdF3B. LCM exposure disrupts the photosynthetic apparatus, exacerbating reactive oxygen species (ROS) levels in leaves, which in turn triggers the upregulation of antioxidative enzymes and the synthesis of antioxidant substances. Additionally, LCMs strongly stimulate the expression of genes involved in abscisic acid (ABA) biosynthesis and signalling pathways. The AI-assisted meta-analysis implicates ABA as a critical regulator in the tobacco response to LCMs. Notably, exogenous application of ABA alleviates LCM-induced toxicities, highlighting the pivotal role of ABA in stress amelioration. Our study provides novel insights into the toxicity and tolerance mechanisms of LCMs in plants, shedding light on both their harmful effects on the ecosystems and potential adaptation responses. This is crucial to develop sustainable agricultural systems by reducing the negative environmental impacts caused by emerging organic pollutants.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信