{"title":"Advancements in the emerging rare-earth halide solid electrolytes for next-generation all-solid-state lithium batteries","authors":"Yijie Zhang, Jichang Sun, Liansheng Li, Zuxin Long, Pengyu Meng, Edison Huixiang Ang, Qinghua Liang","doi":"10.1016/j.ccr.2025.216432","DOIUrl":null,"url":null,"abstract":"All-solid-state lithium batteries (ASSLBs) utilizing inorganic solid-state electrolytes (SEs) are widely regarded as one of the most promising next-generation energy storage technologies due to their superior energy density, enhanced safety, and extended cycle life. The successful commercialization of ASSLBs hinges on the development of SEs that exhibit high ionic conductivity, good chemical stability, and robust mechanical properties. The rare-earth-based halide solid electrolytes (REHSEs) have emerged as particularly promising candidates for ASSLBs, offering several key advantages, including high room-temperature ionic conductivity, outstanding reduction stability, excellent mechanical flexibility, and enhanced compatibility with high-voltage cathodes. Here we examine the recent progress in REHSEs to facilitate the research community's understanding of this rapidly evolving field. We begin by outlining the fundamental principles and current state of research on REHSEs. This is followed by an in-depth discussion of recent research, covering aspects such as preparation methods, phase and structural engineering, ionic conduction mechanisms, and strategies for performance optimization. Finally, we address the major challenges and propose future research directions to enable the practical application of REHSEs in ASSLBs. This review aims to provide valuable insights into the rational design of advanced REHSEs, paving the way for the development of high-performance ASSLBs.","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"7 1","pages":""},"PeriodicalIF":20.3000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ccr.2025.216432","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
All-solid-state lithium batteries (ASSLBs) utilizing inorganic solid-state electrolytes (SEs) are widely regarded as one of the most promising next-generation energy storage technologies due to their superior energy density, enhanced safety, and extended cycle life. The successful commercialization of ASSLBs hinges on the development of SEs that exhibit high ionic conductivity, good chemical stability, and robust mechanical properties. The rare-earth-based halide solid electrolytes (REHSEs) have emerged as particularly promising candidates for ASSLBs, offering several key advantages, including high room-temperature ionic conductivity, outstanding reduction stability, excellent mechanical flexibility, and enhanced compatibility with high-voltage cathodes. Here we examine the recent progress in REHSEs to facilitate the research community's understanding of this rapidly evolving field. We begin by outlining the fundamental principles and current state of research on REHSEs. This is followed by an in-depth discussion of recent research, covering aspects such as preparation methods, phase and structural engineering, ionic conduction mechanisms, and strategies for performance optimization. Finally, we address the major challenges and propose future research directions to enable the practical application of REHSEs in ASSLBs. This review aims to provide valuable insights into the rational design of advanced REHSEs, paving the way for the development of high-performance ASSLBs.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.