A Customized Janus Hydrogel with Robust Bio‐Adhesion and Multi‐Mode Disinfection for Rapid Recovery of Multi‐Drug‐Resistant Staphylococcus aureus‐Infected Open Wounds

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Danning Yan, Xiangmei Liu, Congyang Mao, Chaofeng Wang, Hanpeng Liu, Zhaoyang Li, Shengli Zhu, Hui Jiang, Zhenduo Cui, Yufeng Zheng, Shuilin Wu
{"title":"A Customized Janus Hydrogel with Robust Bio‐Adhesion and Multi‐Mode Disinfection for Rapid Recovery of Multi‐Drug‐Resistant Staphylococcus aureus‐Infected Open Wounds","authors":"Danning Yan, Xiangmei Liu, Congyang Mao, Chaofeng Wang, Hanpeng Liu, Zhaoyang Li, Shengli Zhu, Hui Jiang, Zhenduo Cui, Yufeng Zheng, Shuilin Wu","doi":"10.1002/adfm.202420443","DOIUrl":null,"url":null,"abstract":"Open wounds damage the integrity of the injured tissues and expose them to bacterial infections. Traditional wounds suturing often lead to the reinjuring of the damaged tissues. This delays the healing process, especially in the presence of a bacterial infection. A Janus hydrogel adhesive with bio‐adhesion and multi‐mode disinfection (BAMD) capabilities (a BAMD hydrogel) is developed using a spin‐coating process, which can serve as an alternative to traditional sutures. The organic–inorganic hybrid combination of the Chinese‐medicine organic small molecule rhein (Rhe) and graphene oxide (GO) endows the BAMD hydrogel with dual‐mode antibacterial activity driven by photodynamic (PD) and photothermal (PT) effects including short‐term rapid disinfection (15‐min irradiation, with a 99.95% bactericidal rate) and long‐term antibacterial action in the absence of light (100% bactericidal rate after 6 h of dark incubation). The in vivo results demonstrated a 97.25% bactericidal rate of the BAMD hydrogel against MRSA. Throughout the wound recovery process, the BAMD hydrogel effectively reduced inflammation and promoted tissue healing. This versatile strategy offers new insights into preventing postoperative tissue adhesion and sealing and repairing large‐scale tissue damage.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"36 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202420443","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Open wounds damage the integrity of the injured tissues and expose them to bacterial infections. Traditional wounds suturing often lead to the reinjuring of the damaged tissues. This delays the healing process, especially in the presence of a bacterial infection. A Janus hydrogel adhesive with bio‐adhesion and multi‐mode disinfection (BAMD) capabilities (a BAMD hydrogel) is developed using a spin‐coating process, which can serve as an alternative to traditional sutures. The organic–inorganic hybrid combination of the Chinese‐medicine organic small molecule rhein (Rhe) and graphene oxide (GO) endows the BAMD hydrogel with dual‐mode antibacterial activity driven by photodynamic (PD) and photothermal (PT) effects including short‐term rapid disinfection (15‐min irradiation, with a 99.95% bactericidal rate) and long‐term antibacterial action in the absence of light (100% bactericidal rate after 6 h of dark incubation). The in vivo results demonstrated a 97.25% bactericidal rate of the BAMD hydrogel against MRSA. Throughout the wound recovery process, the BAMD hydrogel effectively reduced inflammation and promoted tissue healing. This versatile strategy offers new insights into preventing postoperative tissue adhesion and sealing and repairing large‐scale tissue damage.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信