Polyproline‐Polyornithine Diblock Copolymers with Inherent Mitochondria Tropism

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Camilla Pegoraro, Ekaterina Karpova, Yusuf Qutbuddin, Esther Masiá Sanchis, Pavels Dimitrijevs, Cristián Huck‐Iriart, Svetozar Gavrilović, Pavel Arsenyan, Petra Schwille, Carles Felip‐León, Aroa Duro‐Castano, Inmaculada Conejos‐Sanchez, María J. Vicent
{"title":"Polyproline‐Polyornithine Diblock Copolymers with Inherent Mitochondria Tropism","authors":"Camilla Pegoraro, Ekaterina Karpova, Yusuf Qutbuddin, Esther Masiá Sanchis, Pavels Dimitrijevs, Cristián Huck‐Iriart, Svetozar Gavrilović, Pavel Arsenyan, Petra Schwille, Carles Felip‐León, Aroa Duro‐Castano, Inmaculada Conejos‐Sanchez, María J. Vicent","doi":"10.1002/adma.202411595","DOIUrl":null,"url":null,"abstract":"Mitochondria play critical roles in regulating cell fate, with dysfunction correlating with the development of multiple diseases, emphasizing the need for engineered nanomedicines that cross biological barriers. Said nanomedicines often target fluctuating mitochondrial properties and/or present inefficient/insufficient cytosolic delivery (resulting in poor overall activity), while many require complex synthetic procedures involving targeting residues (hindering clinical translation). The synthesis/characterization of polypeptide‐based cell penetrating diblock copolymers of poly‐L‐ornithine (PLO) and polyproline (PLP) (PLO<jats:sub>n</jats:sub>‐PLP<jats:sub>m</jats:sub>, n:m ratio 1:3) are described as mitochondria‐targeting nanocarriers. Synthesis involves a simple two‐step methodology based on N‐carboxyanhydride ring‐opening polymerization, with the scale‐up optimization using a “design of experiments” approach. The molecular mechanisms behind targetability and therapeutic activity are investigated through physical/biological processes for diblock copolymers themselves or as targeting moieties in a poly‐L‐glutamic (PGA)‐based conjugate. Diblock copolymers prompt rapid cell entry via energy‐independent mechanisms and recognize mitochondria through the mitochondria‐specific phospholipid cardiolipin (CL). Stimuli‐driven conditions and mitochondria polarization dynamics, which decrease efficacy depending on disease type/stage, do not compromise diblock copolymer uptake/targetability. Diblock copolymers exhibit inherent concentration‐dependent anti‐tumorigenic activity at the mitochondrial level. The diblock copolymer conjugate possesses improved safety, significant cell penetration, and mitochondrial accumulation via cardiolipin recognition. These findings may support the development of efficient and safe mitochondrial‐targeting nanomedicines.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"82 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202411595","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondria play critical roles in regulating cell fate, with dysfunction correlating with the development of multiple diseases, emphasizing the need for engineered nanomedicines that cross biological barriers. Said nanomedicines often target fluctuating mitochondrial properties and/or present inefficient/insufficient cytosolic delivery (resulting in poor overall activity), while many require complex synthetic procedures involving targeting residues (hindering clinical translation). The synthesis/characterization of polypeptide‐based cell penetrating diblock copolymers of poly‐L‐ornithine (PLO) and polyproline (PLP) (PLOn‐PLPm, n:m ratio 1:3) are described as mitochondria‐targeting nanocarriers. Synthesis involves a simple two‐step methodology based on N‐carboxyanhydride ring‐opening polymerization, with the scale‐up optimization using a “design of experiments” approach. The molecular mechanisms behind targetability and therapeutic activity are investigated through physical/biological processes for diblock copolymers themselves or as targeting moieties in a poly‐L‐glutamic (PGA)‐based conjugate. Diblock copolymers prompt rapid cell entry via energy‐independent mechanisms and recognize mitochondria through the mitochondria‐specific phospholipid cardiolipin (CL). Stimuli‐driven conditions and mitochondria polarization dynamics, which decrease efficacy depending on disease type/stage, do not compromise diblock copolymer uptake/targetability. Diblock copolymers exhibit inherent concentration‐dependent anti‐tumorigenic activity at the mitochondrial level. The diblock copolymer conjugate possesses improved safety, significant cell penetration, and mitochondrial accumulation via cardiolipin recognition. These findings may support the development of efficient and safe mitochondrial‐targeting nanomedicines.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信