Discovering Cell‐Targeting Ligands and Cell‐Surface Receptors by Selection of DNA‐Encoded Chemical Libraries against Cancer Cells without Predefined Targets

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuhan Gui, Rui Hou, Yuchen Huang, Yu Zhou, Shihao Liu, Ling Meng, Ying Li, Fong Sang Lam, Ruoyun Ding, Yan Cao, Gang Li, Xiaojie Lu, Xiaoyu Li
{"title":"Discovering Cell‐Targeting Ligands and Cell‐Surface Receptors by Selection of DNA‐Encoded Chemical Libraries against Cancer Cells without Predefined Targets","authors":"Yuhan Gui, Rui Hou, Yuchen Huang, Yu Zhou, Shihao Liu, Ling Meng, Ying Li, Fong Sang Lam, Ruoyun Ding, Yan Cao, Gang Li, Xiaojie Lu, Xiaoyu Li","doi":"10.1002/anie.202421172","DOIUrl":null,"url":null,"abstract":"Small molecules that can bind to specific cells have broad applications in cancer diagnosis and treatment. Screening large chemical libraries against live cells is an effective strategy for discovering cell‐targeting ligands. The DNA‐encoded chemical library (DEL or DECL) technology has emerged as a robust tool in drug discovery and has been successfully utilized in identifying ligands for biological targets. However, nearly all DEL selections have predefined targets, while target‐agnostic DEL selections interrogating the entire cell surface remain underexplored. Herein, we systematically optimized a cell‐based DEL selection method against cancer cells without predefined targets. A 104.96‐million‐member DEL was selected against MDA‐MB‐231 and MCF‐7 breast cancer cells, representing high and low metastatic properties, respectively, which led to the identification of cell‐specific small molecules. We further demonstrated cell‐targeting applications of these ligands in cancer photodynamic therapy and targeted drug delivery. Finally, leveraging the DNA tag of DEL compounds, we identified α‐enolase (ENO1) as the cell surface receptor of one of the ligands targeting the more aggressive MDA‐MB‐231 cells. Overall, this work offers an efficient approach for discovering cell‐targeting small molecule ligands by using DELs and demonstrates that DELs can be a useful tool to identify specific surface receptors on cancer cells.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"45 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421172","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Small molecules that can bind to specific cells have broad applications in cancer diagnosis and treatment. Screening large chemical libraries against live cells is an effective strategy for discovering cell‐targeting ligands. The DNA‐encoded chemical library (DEL or DECL) technology has emerged as a robust tool in drug discovery and has been successfully utilized in identifying ligands for biological targets. However, nearly all DEL selections have predefined targets, while target‐agnostic DEL selections interrogating the entire cell surface remain underexplored. Herein, we systematically optimized a cell‐based DEL selection method against cancer cells without predefined targets. A 104.96‐million‐member DEL was selected against MDA‐MB‐231 and MCF‐7 breast cancer cells, representing high and low metastatic properties, respectively, which led to the identification of cell‐specific small molecules. We further demonstrated cell‐targeting applications of these ligands in cancer photodynamic therapy and targeted drug delivery. Finally, leveraging the DNA tag of DEL compounds, we identified α‐enolase (ENO1) as the cell surface receptor of one of the ligands targeting the more aggressive MDA‐MB‐231 cells. Overall, this work offers an efficient approach for discovering cell‐targeting small molecule ligands by using DELs and demonstrates that DELs can be a useful tool to identify specific surface receptors on cancer cells.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信