Hui Yang, Meiyu Peng, Hairong He, Dian Yu, Kai Ou, Quan Wang, Xuhao Luo, Yueqiang Hu, Hui Jing, Huigao Duan
{"title":"Polarization‐Independent Dispersive Complex‐Amplitude Modulation via Anisotropic Metasurfaces","authors":"Hui Yang, Meiyu Peng, Hairong He, Dian Yu, Kai Ou, Quan Wang, Xuhao Luo, Yueqiang Hu, Hui Jing, Huigao Duan","doi":"10.1002/lpor.202401398","DOIUrl":null,"url":null,"abstract":"Polarization‐independent characteristic is highly desirable for practical applications, and for metasurfaces, it is typically achieved through isotropic structures. This inevitably leads to a lost degree of freedom (DoF) within the parameter space, thereby restricting the realization of advanced functionalities in a polarization‐independent regime. Here, counterintuitively, polarization‐independent dispersive complex‐amplitude modulation is achieved via a single‐layered anisotropic metasurface. By fully exploiting the in‐plane DoFs in the parameter space, the previously unattainable polarization‐independent functionalities can be achieved without adding additional challenges to metasurface manufacturing. The underlying mechanism relies on the optimization of the superimposed dispersive Jones matrix of the meta‐molecule, which demonstrates identical behavior under a pair of orthogonal polarization bases. As a proof of concept, polarization‐independent color printing is numerically and experimentally demonstrated, which is completely different from the resonant structural color that depends on the optimization of spectral characteristic. Moreover, the integration of near‐field color printing, far‐field color holography, and an achromatic multi‐port beam splitter with arbitrary power ratio are demonstrated as well. The proposed metasurface platform opens up new doors for designing polarization‐independent compact meta‐devices, holding various applications in augmented‐reality displaying, information communication, and optical security.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"22 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401398","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Polarization‐independent characteristic is highly desirable for practical applications, and for metasurfaces, it is typically achieved through isotropic structures. This inevitably leads to a lost degree of freedom (DoF) within the parameter space, thereby restricting the realization of advanced functionalities in a polarization‐independent regime. Here, counterintuitively, polarization‐independent dispersive complex‐amplitude modulation is achieved via a single‐layered anisotropic metasurface. By fully exploiting the in‐plane DoFs in the parameter space, the previously unattainable polarization‐independent functionalities can be achieved without adding additional challenges to metasurface manufacturing. The underlying mechanism relies on the optimization of the superimposed dispersive Jones matrix of the meta‐molecule, which demonstrates identical behavior under a pair of orthogonal polarization bases. As a proof of concept, polarization‐independent color printing is numerically and experimentally demonstrated, which is completely different from the resonant structural color that depends on the optimization of spectral characteristic. Moreover, the integration of near‐field color printing, far‐field color holography, and an achromatic multi‐port beam splitter with arbitrary power ratio are demonstrated as well. The proposed metasurface platform opens up new doors for designing polarization‐independent compact meta‐devices, holding various applications in augmented‐reality displaying, information communication, and optical security.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.