Vianna N. Le, Kyle N. Baustert, Megan R. Brown, Joel H. Bombile, Lucas Q. Flagg, Karl Thorley, Christina J. Kousseff, Olga Solomeshch, Iain McCulloch, Nir Tessler, Chad Risko, Kenneth R. Graham, Alexandra F. Paterson
{"title":"Improved organic electrochemical transistor stability using solvent degassing and chemical doping","authors":"Vianna N. Le, Kyle N. Baustert, Megan R. Brown, Joel H. Bombile, Lucas Q. Flagg, Karl Thorley, Christina J. Kousseff, Olga Solomeshch, Iain McCulloch, Nir Tessler, Chad Risko, Kenneth R. Graham, Alexandra F. Paterson","doi":"10.1038/s41928-024-01297-8","DOIUrl":null,"url":null,"abstract":"Organic mixed ionic–electronic conductors (OMIECs), which can be used to build organic electrochemical transistors (OECTs), are of potential use in flexible, large-area and bioelectronic systems. Although hole-transporting p-type OMIECs are susceptible to oxidation, and oxygen leads to OECT instability, it is unclear whether oxygen also behaves as an uncontrolled p-dopant. We show that oxygen dissolved in a solvent can act as a p-dopant in OMIECs and OECTs by filling traps to enable effective electrochemical doping. To address the fact that the presence of oxygen simultaneously jeopardizes OECT stability, we develop a two-step strategy in which we first degas the solvent, and then dope the OMIEC in a controlled manner using a chemical dopant. Our approach improves the stability of both p-type and n-type OECTs, while increasing the on–off ratio, tuning the threshold voltage and enhancing the transconductance, charge carrier mobility, and the µC* product—that is, the product of mobility and the volumetric capacitance. The stability and performance of organic electrochemical transistors can be improved using a two-step technique in which oxygen is first removed from the solvent and then a chemical dopant is introduced into the organic mixed ionic–electronic conductor.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"8 2","pages":"116-126"},"PeriodicalIF":33.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01297-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Organic mixed ionic–electronic conductors (OMIECs), which can be used to build organic electrochemical transistors (OECTs), are of potential use in flexible, large-area and bioelectronic systems. Although hole-transporting p-type OMIECs are susceptible to oxidation, and oxygen leads to OECT instability, it is unclear whether oxygen also behaves as an uncontrolled p-dopant. We show that oxygen dissolved in a solvent can act as a p-dopant in OMIECs and OECTs by filling traps to enable effective electrochemical doping. To address the fact that the presence of oxygen simultaneously jeopardizes OECT stability, we develop a two-step strategy in which we first degas the solvent, and then dope the OMIEC in a controlled manner using a chemical dopant. Our approach improves the stability of both p-type and n-type OECTs, while increasing the on–off ratio, tuning the threshold voltage and enhancing the transconductance, charge carrier mobility, and the µC* product—that is, the product of mobility and the volumetric capacitance. The stability and performance of organic electrochemical transistors can be improved using a two-step technique in which oxygen is first removed from the solvent and then a chemical dopant is introduced into the organic mixed ionic–electronic conductor.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.