{"title":"A reconfigurable heterostructure transistor array for monocular 3D parallax reconstruction","authors":"Zhexin Li, Hao Xu, Yiqiang Zheng, Lingchen Liu, Linlin Li, Zheng Lou, Lili Wang","doi":"10.1038/s41928-024-01261-6","DOIUrl":null,"url":null,"abstract":"<p>Sensors that are capable of three-dimensional detection of depth field information in the spatial domain are of potential use in applications such as robotics, satellite imaging and medical assistance. However, current techniques require a precise light source for complex phase detection and diffraction, or involve static multidirectional reflection imaging. Here we report a reconfigurable heterostructure transistor array for monocular three-dimensional parallax reconstruction. The phototransistors are based on heterostructures of indium gallium zinc oxide and tungsten diselenide, and can operate as n-type, p-type or ambipolar transistors depending on electrostatic modulation. The arrays can be switched between two modes: a real-time constant perception mode for static imaging and a spatiotemporal planar configuration mode with memory for dynamic imaging. To switch between the modes, the dominant carrier polarity is changed via a complementary metal–oxide–semiconductor-compatible multiterminal addressing architecture. We show that the system can be used for three-dimensional morphology reconstruction, two-dimensional depth field mapping and multi-view coupling.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"10 1","pages":""},"PeriodicalIF":33.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-024-01261-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Sensors that are capable of three-dimensional detection of depth field information in the spatial domain are of potential use in applications such as robotics, satellite imaging and medical assistance. However, current techniques require a precise light source for complex phase detection and diffraction, or involve static multidirectional reflection imaging. Here we report a reconfigurable heterostructure transistor array for monocular three-dimensional parallax reconstruction. The phototransistors are based on heterostructures of indium gallium zinc oxide and tungsten diselenide, and can operate as n-type, p-type or ambipolar transistors depending on electrostatic modulation. The arrays can be switched between two modes: a real-time constant perception mode for static imaging and a spatiotemporal planar configuration mode with memory for dynamic imaging. To switch between the modes, the dominant carrier polarity is changed via a complementary metal–oxide–semiconductor-compatible multiterminal addressing architecture. We show that the system can be used for three-dimensional morphology reconstruction, two-dimensional depth field mapping and multi-view coupling.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.