BLOSOM: A Plant Growth Facility Optimised for Continuous 13C Labelling and Measurement of Soil Organic Matter Dynamics

IF 4 2区 农林科学 Q2 SOIL SCIENCE
Nina L. Friggens, Neville England, Julian B. Murton, Gareth K. Phoenix, Iain P. Hartley
{"title":"BLOSOM: A Plant Growth Facility Optimised for Continuous 13C Labelling and Measurement of Soil Organic Matter Dynamics","authors":"Nina L. Friggens,&nbsp;Neville England,&nbsp;Julian B. Murton,&nbsp;Gareth K. Phoenix,&nbsp;Iain P. Hartley","doi":"10.1111/ejss.70042","DOIUrl":null,"url":null,"abstract":"<p>Changes in soil carbon (C) stocks are largely driven by rhizosphere processes forming new soil organic matter (SOM) or stimulating SOM decomposition by rhizosphere priming effects (RPEs). Quantifying these changes is challenging and requires high spatial sampling densities or plant–soil experiments with highly distinct C isotopic signatures for plants and soils. Current methods for quantifying new SOM formation and RPEs rely on low labelling intensities, which introduces high levels of uncertainty. Here, we describe the design and operation of an experimental laboratory facility—BLOSOM (Botanical Labelling Observatory for Soil Organic Matter)—optimised for continuous <sup>13</sup>C labelling of plants at high labelling intensities (&gt; 500‰) to quantify new SOM formation and RPEs in temperature-controlled soils from 216 experimental units. Throughout a &gt; 6-month experimental period, independent control of soil and air temperature was achieved across diurnal cycles averaging at 5.24°C ± 0.05°C and 21.4°C ± 1.2°C, respectively. BLOSOM can maintain stable CO<sub>2</sub> concentrations and δ<sup>13</sup>C isotopic composition within 5% of setpoints (CO<sub>2</sub>: 440 ppm, δ<sup>13</sup>C: 515‰) across a &gt; 6-month period. This high-precision control on atmospheric enrichment enables the detection of new SOM formation with a total uncertainty of ±39% to ±3% for a theoretical range of 0.5%–10% new SOM formation, respectively. BLOSOM has the potential improve quantification and mechanistic understanding of new SOM formation and RPEs across many different combinations of plants, soils and simulated climatic conditions to mimic a wide range of ecosystems and climate scenarios.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"76 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70042","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Changes in soil carbon (C) stocks are largely driven by rhizosphere processes forming new soil organic matter (SOM) or stimulating SOM decomposition by rhizosphere priming effects (RPEs). Quantifying these changes is challenging and requires high spatial sampling densities or plant–soil experiments with highly distinct C isotopic signatures for plants and soils. Current methods for quantifying new SOM formation and RPEs rely on low labelling intensities, which introduces high levels of uncertainty. Here, we describe the design and operation of an experimental laboratory facility—BLOSOM (Botanical Labelling Observatory for Soil Organic Matter)—optimised for continuous 13C labelling of plants at high labelling intensities (> 500‰) to quantify new SOM formation and RPEs in temperature-controlled soils from 216 experimental units. Throughout a > 6-month experimental period, independent control of soil and air temperature was achieved across diurnal cycles averaging at 5.24°C ± 0.05°C and 21.4°C ± 1.2°C, respectively. BLOSOM can maintain stable CO2 concentrations and δ13C isotopic composition within 5% of setpoints (CO2: 440 ppm, δ13C: 515‰) across a > 6-month period. This high-precision control on atmospheric enrichment enables the detection of new SOM formation with a total uncertainty of ±39% to ±3% for a theoretical range of 0.5%–10% new SOM formation, respectively. BLOSOM has the potential improve quantification and mechanistic understanding of new SOM formation and RPEs across many different combinations of plants, soils and simulated climatic conditions to mimic a wide range of ecosystems and climate scenarios.

Abstract Image

花:植物生长设施优化的连续13C标记和土壤有机质动态测量
土壤碳储量的变化在很大程度上是由根际形成新的土壤有机质(SOM)或通过根际启动效应(RPEs)刺激有机质分解的过程驱动的。量化这些变化具有挑战性,需要高空间采样密度或植物-土壤实验,并具有高度不同的植物和土壤碳同位素特征。目前量化新SOM形成和rpe的方法依赖于低标记强度,这引入了高水平的不确定性。在这里,我们描述了一个实验实验室设施的设计和操作- blosom(土壤有机质植物标记观测站)-优化为在高标记强度下连续13C标记植物(>;500‰),以量化216个实验单元的温控土壤中新的SOM形成和rpe。在整个>;在为期6个月的试验期间,土壤和空气温度分别在5.24°C±0.05°C和21.4°C±1.2°C的昼夜循环中独立控制。BLOSOM可以在整个过程中保持稳定的CO2浓度和δ13C同位素组成在设定值(CO2: 440 ppm, δ13C: 515‰)的5%以内;6月里。这种对大气富集的高精度控制使得新SOM地层的检测总不确定度分别为±39%至±3%,理论范围为0.5%-10%。BLOSOM有可能在许多不同的植物、土壤和模拟气候条件的组合中改善新的SOM形成和rpe的量化和机制理解,以模拟广泛的生态系统和气候情景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Soil Science
European Journal of Soil Science 农林科学-土壤科学
CiteScore
8.20
自引率
4.80%
发文量
117
审稿时长
5 months
期刊介绍: The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信