{"title":"EOSnet: Embedded Overlap Structures for Graph Neural Networks in Predicting Material Properties","authors":"Shuo Tao, Li Zhu","doi":"10.1021/acs.jpclett.4c03179","DOIUrl":null,"url":null,"abstract":"Graph Neural Networks (GNNs) have emerged as powerful tools for predicting material properties, yet they often struggle to capture many-body interactions and require extensive manual feature engineering. Here, we present EOSnet (Embedded Overlap Structures for Graph Neural Networks), a novel approach that addresses these limitations by incorporating Gaussian Overlap Matrix (GOM) fingerprints as node features within the GNN architecture. Unlike models that rely on explicit angular terms or human-engineered features, EOSnet efficiently encodes many-body interactions through orbital overlap matrices, providing a rotationally invariant and transferable representation of atomic environments. The model demonstrates superior performance across various prediction tasks of materials’ properties, achieving particularly notable results in properties sensitive to many-body interactions. For band gap prediction, EOSnet achieves a mean absolute error of 0.163 eV, surpassing previous state-of-the-art models. The model also excels in predicting mechanical properties and classifying materials, with 97.7% accuracy in metal/nonmetal classification. These results demonstrate that embedding GOM fingerprints into node features enhances the ability of GNNs to capture complex atomic interactions, making EOSnet a powerful tool for materials’ discovery and property prediction.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"21 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03179","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Graph Neural Networks (GNNs) have emerged as powerful tools for predicting material properties, yet they often struggle to capture many-body interactions and require extensive manual feature engineering. Here, we present EOSnet (Embedded Overlap Structures for Graph Neural Networks), a novel approach that addresses these limitations by incorporating Gaussian Overlap Matrix (GOM) fingerprints as node features within the GNN architecture. Unlike models that rely on explicit angular terms or human-engineered features, EOSnet efficiently encodes many-body interactions through orbital overlap matrices, providing a rotationally invariant and transferable representation of atomic environments. The model demonstrates superior performance across various prediction tasks of materials’ properties, achieving particularly notable results in properties sensitive to many-body interactions. For band gap prediction, EOSnet achieves a mean absolute error of 0.163 eV, surpassing previous state-of-the-art models. The model also excels in predicting mechanical properties and classifying materials, with 97.7% accuracy in metal/nonmetal classification. These results demonstrate that embedding GOM fingerprints into node features enhances the ability of GNNs to capture complex atomic interactions, making EOSnet a powerful tool for materials’ discovery and property prediction.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.