Hybrid Iterating-Averaging Low Photon Budget Gabor Holographic Microscopy

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mikolaj Rogalski, Piotr Arcab, Emilia Wdowiak, José Ángel Picazo-Bueno, Vicente Micó, Michal Józwik, Maciej Trusiak
{"title":"Hybrid Iterating-Averaging Low Photon Budget Gabor Holographic Microscopy","authors":"Mikolaj Rogalski, Piotr Arcab, Emilia Wdowiak, José Ángel Picazo-Bueno, Vicente Micó, Michal Józwik, Maciej Trusiak","doi":"10.1021/acsphotonics.4c01863","DOIUrl":null,"url":null,"abstract":"Achieving high-contrast, label-free imaging with minimal impact on live cell culture behavior remains a primary challenge in quantitative phase imaging (QPI). By enabling imaging under low illumination intensities (low photon budget, LPB), it is possible to minimize cell photostimulation, phototoxicity, and photodamage while supporting long-term and high-speed observations. However, LPB imaging introduces significant difficulties in QPI due to high levels of camera shot noise and quantification noise. Digital in-line holographic microscopy (DIHM) is a QPI technique known for its robustness against LPB data. However, simultaneous minimization of shot noise and inherent in DIHM twin image perturbation remains a critical challenge. In this study, we present the iterative Gabor averaging (IGA) algorithm, a novel approach that integrates iterative phase retrieval with frame averaging to effectively suppress both twin image disturbance and shot noise in multiframe DIHM. The IGA algorithm achieves this by leveraging an iterative process that reconstructs high-fidelity phase images while selectively averaging camera shot noise across frames. Our simulations demonstrate that IGA consistently outperforms conventional methods, achieving superior reconstruction accuracy, particularly under high-noise conditions. Experimental validations involving high-speed imaging of dynamic sperm cells and a static phase test target measurement under low illumination further confirmed IGA’s efficacy. The algorithm also proved successful for optically thin samples, which often yield low signal-to-noise holograms even at high photon budgets. These advancements make IGA a powerful tool for photostimulation-free, high-speed imaging of dynamic biological samples and enhance the ability to image samples with extremely low optical thickness, potentially transforming biomedical and environmental applications in low-light settings.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"75 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01863","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving high-contrast, label-free imaging with minimal impact on live cell culture behavior remains a primary challenge in quantitative phase imaging (QPI). By enabling imaging under low illumination intensities (low photon budget, LPB), it is possible to minimize cell photostimulation, phototoxicity, and photodamage while supporting long-term and high-speed observations. However, LPB imaging introduces significant difficulties in QPI due to high levels of camera shot noise and quantification noise. Digital in-line holographic microscopy (DIHM) is a QPI technique known for its robustness against LPB data. However, simultaneous minimization of shot noise and inherent in DIHM twin image perturbation remains a critical challenge. In this study, we present the iterative Gabor averaging (IGA) algorithm, a novel approach that integrates iterative phase retrieval with frame averaging to effectively suppress both twin image disturbance and shot noise in multiframe DIHM. The IGA algorithm achieves this by leveraging an iterative process that reconstructs high-fidelity phase images while selectively averaging camera shot noise across frames. Our simulations demonstrate that IGA consistently outperforms conventional methods, achieving superior reconstruction accuracy, particularly under high-noise conditions. Experimental validations involving high-speed imaging of dynamic sperm cells and a static phase test target measurement under low illumination further confirmed IGA’s efficacy. The algorithm also proved successful for optically thin samples, which often yield low signal-to-noise holograms even at high photon budgets. These advancements make IGA a powerful tool for photostimulation-free, high-speed imaging of dynamic biological samples and enhance the ability to image samples with extremely low optical thickness, potentially transforming biomedical and environmental applications in low-light settings.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信