Wenqiang Gao , Jianfeng Liu , Wenquan Bao , Fujun Duan , Xiao He , Dongli Gao , Xiangdong Lei
{"title":"Extreme droughts decrease the growth and resilience of Juniperus rigida in the northern edge but not in the southern","authors":"Wenqiang Gao , Jianfeng Liu , Wenquan Bao , Fujun Duan , Xiao He , Dongli Gao , Xiangdong Lei","doi":"10.1016/j.agrformet.2025.110387","DOIUrl":null,"url":null,"abstract":"<div><div>Impending climate change is anticipated to exacerbate the frequency and severity of extreme droughts, significantly affecting tree growth and distribution ranges. A critical endeavor in predicting how tree species will respond to more frequent and intense severe droughts is assessing the drought sensitivity and resilience of tree growth across a species' different range. However, the variation in tree growth resistance and resilience to extreme droughts across different distribution range edges have received little attention. In this study, we analyzed tree ring width data from 596 trees across 19 sites, encompassing the northernmost and southernmost distribution limits of <em>Juniperus rigida</em> in China. Our objectives were to delineate patterns of growth resistance, recovery and resilience to extreme droughts between northern and southern populations, and to assess their driving factors. Our findings revealed that the drought events significantly reduced the tree growth. Specifically, the tree growth has exhibited a decreasing trend in the northern distribution range limit, but an increasing trend at southern range limit since 1996, due to the more frequent and severe droughts in the northern region than in the southern. Furthermore, although the tree growth resistance and resilience were significantly higher in the northern limits than those in the southern, more frequent droughts will reduce their resistance and resilience. In addition, the growth resistance and resilience were also affected by factors such as tree age, pre-drought growth (e.g. mean growth rate and variability), and the interaction between drought characteristics and pre-drought growth. We conclude that <em>J. rigida</em> trees exhibit greater resistance and resilience to drought at their northern range limits compared to their southern counterparts. However, the increasing frequency and severity of droughts in the northern expose these trees to more persistent drought conditions, which could ultimately result in a decline in resilience and growth.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"362 ","pages":"Article 110387"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192325000073","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Impending climate change is anticipated to exacerbate the frequency and severity of extreme droughts, significantly affecting tree growth and distribution ranges. A critical endeavor in predicting how tree species will respond to more frequent and intense severe droughts is assessing the drought sensitivity and resilience of tree growth across a species' different range. However, the variation in tree growth resistance and resilience to extreme droughts across different distribution range edges have received little attention. In this study, we analyzed tree ring width data from 596 trees across 19 sites, encompassing the northernmost and southernmost distribution limits of Juniperus rigida in China. Our objectives were to delineate patterns of growth resistance, recovery and resilience to extreme droughts between northern and southern populations, and to assess their driving factors. Our findings revealed that the drought events significantly reduced the tree growth. Specifically, the tree growth has exhibited a decreasing trend in the northern distribution range limit, but an increasing trend at southern range limit since 1996, due to the more frequent and severe droughts in the northern region than in the southern. Furthermore, although the tree growth resistance and resilience were significantly higher in the northern limits than those in the southern, more frequent droughts will reduce their resistance and resilience. In addition, the growth resistance and resilience were also affected by factors such as tree age, pre-drought growth (e.g. mean growth rate and variability), and the interaction between drought characteristics and pre-drought growth. We conclude that J. rigida trees exhibit greater resistance and resilience to drought at their northern range limits compared to their southern counterparts. However, the increasing frequency and severity of droughts in the northern expose these trees to more persistent drought conditions, which could ultimately result in a decline in resilience and growth.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.