Caoyuan Gu , Qi Wu , Baokang Zhang , Yaowei Wang , Wen-An Zhang , Hongjie Ni
{"title":"Data-model interactive Rul prediction of stochastic degradation devices with multiple uncertainty quantification and multi-sensor information fusion","authors":"Caoyuan Gu , Qi Wu , Baokang Zhang , Yaowei Wang , Wen-An Zhang , Hongjie Ni","doi":"10.1016/j.isatra.2024.12.024","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes an improved remaining useful life (RUL) prediction method for stochastic degradation devices monitored by multi-source sensors under data-model interactive framework. Firstly, the interrelationships among sensors are established using k-nearest neighbor (KNN), and the composite health index (CHI) is constructed by aggregating the multi-source sensor information through the graph convolutional network (GCN). Secondly, a stochastic degradation model with triple uncertainty at any initial degradation level is established to improve the matching degree between the stochastic degradation model and the actual degradation process. Then, a data-model interactive mechanism is proposed to form a closed-loop optimization between the CHI construction and the stochastic degradation model to enhance the RUL prediction accuracy of the device. Finally, experiments on aero-engine and tool datasets indicate that the proposed method can improve the comprehensive performance by at least 20% compared with the original method of the data-model interactive framework, which verifies its effectiveness and superiority.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"157 ","pages":"Pages 293-305"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824006086","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes an improved remaining useful life (RUL) prediction method for stochastic degradation devices monitored by multi-source sensors under data-model interactive framework. Firstly, the interrelationships among sensors are established using k-nearest neighbor (KNN), and the composite health index (CHI) is constructed by aggregating the multi-source sensor information through the graph convolutional network (GCN). Secondly, a stochastic degradation model with triple uncertainty at any initial degradation level is established to improve the matching degree between the stochastic degradation model and the actual degradation process. Then, a data-model interactive mechanism is proposed to form a closed-loop optimization between the CHI construction and the stochastic degradation model to enhance the RUL prediction accuracy of the device. Finally, experiments on aero-engine and tool datasets indicate that the proposed method can improve the comprehensive performance by at least 20% compared with the original method of the data-model interactive framework, which verifies its effectiveness and superiority.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.