Neuronal Imaging at 8-Bit Depth to Combine High Spatial and High Temporal Resolution With Acquisition Rates Up To 40 kHz

IF 2 3区 物理与天体物理 Q3 BIOCHEMICAL RESEARCH METHODS
Fatima Abbas, Ömer Yusuf İpek, Philippe Moreau, Marco Canepari
{"title":"Neuronal Imaging at 8-Bit Depth to Combine High Spatial and High Temporal Resolution With Acquisition Rates Up To 40 kHz","authors":"Fatima Abbas,&nbsp;Ömer Yusuf İpek,&nbsp;Philippe Moreau,&nbsp;Marco Canepari","doi":"10.1002/jbio.202400513","DOIUrl":null,"url":null,"abstract":"<p>A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%–10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca<sup>2+</sup> or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates. In hippocampal slices stained with the Ca<sup>2+</sup> indicator Fluo-4 AM, we resolved transients at 2 kHz from large frames. Along the apical dendrite of a layer-5 pyramidal neuron, we measured Ca<sup>2+</sup> signals associated with a back-propagating action potential at 10 kHz. Finally, in the axon initial segment of the same cell type, we recorded an action potential at 40 kHz by voltage-sensitive dye imaging. This approach unlocks the potential for a range of imaging measurements.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400513","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400513","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%–10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca2+ or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates. In hippocampal slices stained with the Ca2+ indicator Fluo-4 AM, we resolved transients at 2 kHz from large frames. Along the apical dendrite of a layer-5 pyramidal neuron, we measured Ca2+ signals associated with a back-propagating action potential at 10 kHz. Finally, in the axon initial segment of the same cell type, we recorded an action potential at 40 kHz by voltage-sensitive dye imaging. This approach unlocks the potential for a range of imaging measurements.

Abstract Image

神经元成像在8位深度结合高空间和高时间分辨率与采集率高达40 kHz。
从尽可能多的像素中获取高时间分辨率的帧序列是神经成像的一个挑战。测量1%-10%的荧光变化通常需要12位或更高的位深度,这限制了帧大小,允许在kHz范围内成像。我们通过获取8位深度的荧光和离线像素,在脑切片中从细胞群或单个神经元中分离Ca2+或膜电位信号,以kHz速率实现前所未有的帧大小。在用Ca2+指示剂Fluo-4 AM染色的海马切片中,我们从大帧中分辨出2 kHz的瞬态。沿着第5层锥体神经元的顶端树突,我们测量了与10 kHz反向传播动作电位相关的Ca2+信号。最后,在同一细胞类型的轴突起始段,我们用电压敏感染料成像记录了40 kHz的动作电位。这种方法开启了一系列成像测量的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biophotonics
Journal of Biophotonics 生物-生化研究方法
CiteScore
5.70
自引率
7.10%
发文量
248
审稿时长
1 months
期刊介绍: The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信