Hang Zhou, Junmeng Zhu, Yi Mei, Aoxing Chen, Rui Liu, Xiaonan Wang, Xiangyu Wu, Xiaotong Chen, Baorui Liu
{"title":"Intratumoral Injection of Engineered <i>Mycobacterium smegmatis</i> Induces Antitumor Immunity and Inhibits Tumor Growth.","authors":"Hang Zhou, Junmeng Zhu, Yi Mei, Aoxing Chen, Rui Liu, Xiaonan Wang, Xiangyu Wu, Xiaotong Chen, Baorui Liu","doi":"10.34133/bmr.0130","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional type 1 dendritic cells are essential for antigen presentation and successful initiation of antitumor CD8<sup>+</sup> T cells. However, their abundance and function within tumors tend to be limited. <i>Mycobacterium smegmatis</i>, a fast-growing, nonpathogenic mycobacterium, proves to be easily modified with synthetic biology. Herein, we construct an engineered <i>M. smegmatis</i> expressing a fusion protein of Fms-like tyrosine kinase 3 ligand and costimulator CD40darpin (rM-FC) since the 2 drugs are reported to have a good synergistic effect. Intratumoral delivery of rM-FC effectively recruits and activates dendritic cells (DCs), especially CD103<sup>+</sup> DCs and CD80<sup>+</sup>CD86<sup>+</sup> DCs, further inducing sufficient migration of effector memory T cells into the tumor microenvironment. This successfully converts the so-called immune-desert tumors to the \"hot\" phenotype. In B16F10 mouse melanoma tumor models, local injection of rM-FC into the primary tumor triggers a robust T cell immune response to restrain the growth of both the treated tumors and the distant untreated ones. The population of PDL1<sup>+</sup> tumor cells increased after the in situ vaccination, and murine tumors became more responsive to programmed death ligand 1 (PDL1) blockade, prompting the combination therapy. Overall, our findings demonstrate that rM-FC acts as a strong DC agonist and remarkably enhances antitumor immunity.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0130"},"PeriodicalIF":8.1000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704092/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional type 1 dendritic cells are essential for antigen presentation and successful initiation of antitumor CD8+ T cells. However, their abundance and function within tumors tend to be limited. Mycobacterium smegmatis, a fast-growing, nonpathogenic mycobacterium, proves to be easily modified with synthetic biology. Herein, we construct an engineered M. smegmatis expressing a fusion protein of Fms-like tyrosine kinase 3 ligand and costimulator CD40darpin (rM-FC) since the 2 drugs are reported to have a good synergistic effect. Intratumoral delivery of rM-FC effectively recruits and activates dendritic cells (DCs), especially CD103+ DCs and CD80+CD86+ DCs, further inducing sufficient migration of effector memory T cells into the tumor microenvironment. This successfully converts the so-called immune-desert tumors to the "hot" phenotype. In B16F10 mouse melanoma tumor models, local injection of rM-FC into the primary tumor triggers a robust T cell immune response to restrain the growth of both the treated tumors and the distant untreated ones. The population of PDL1+ tumor cells increased after the in situ vaccination, and murine tumors became more responsive to programmed death ligand 1 (PDL1) blockade, prompting the combination therapy. Overall, our findings demonstrate that rM-FC acts as a strong DC agonist and remarkably enhances antitumor immunity.