Gene signatures derived from transcriptomic-causal networks stratify colorectal cancer patients for effective targeted therapy.

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Akram Yazdani, Heinz-Josef Lenz, Gianluigi Pillonetto, Raul Mendez-Giraldez, Azam Yazdani, Hanna Sanoff, Reza Hadi, Esmat Samiei, Alan P Venook, Mark J Ratain, Naim Rashid, Benjamin G Vincent, Xueping Qu, Yujia Wen, Michael Kosorok, William F Symmans, John Paul Y C Shen, Michael S Lee, Scott Kopetz, Andrew B Nixon, Monica M Bertagnolli, Charles M Perou, Federico Innocenti
{"title":"Gene signatures derived from transcriptomic-causal networks stratify colorectal cancer patients for effective targeted therapy.","authors":"Akram Yazdani, Heinz-Josef Lenz, Gianluigi Pillonetto, Raul Mendez-Giraldez, Azam Yazdani, Hanna Sanoff, Reza Hadi, Esmat Samiei, Alan P Venook, Mark J Ratain, Naim Rashid, Benjamin G Vincent, Xueping Qu, Yujia Wen, Michael Kosorok, William F Symmans, John Paul Y C Shen, Michael S Lee, Scott Kopetz, Andrew B Nixon, Monica M Bertagnolli, Charles M Perou, Federico Innocenti","doi":"10.1038/s43856-024-00728-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gene signatures derived from transcriptomic-causal networks offer potential for tailoring clinical care in cancer treatment by identifying predictive and prognostic biomarkers. This study aimed to uncover such signatures in metastatic colorectal cancer (CRC) patients to aid treatment decisions.</p><p><strong>Methods: </strong>We constructed transcriptomic-causal networks and integrated gene interconnectivity into overall survival (OS) analysis to control for confounding genes. This integrative approach involved germline genotype and tumor RNA-seq data from 1165 metastatic CRC patients. The patients were enrolled in a randomized clinical trial receiving either cetuximab or bevacizumab in combination with chemotherapy. An external cohort of paired CRC normal and tumor samples, along with protein-protein interaction databases, was used for replication.</p><p><strong>Results: </strong>We identify promising predictive and prognostic gene signatures from pre-treatment gene expression profiles. Our study discerns sets of genes, each forming a signature that collectively contribute to define patient subgroups with different prognosis and response to the therapies. Using an external cohort, we show that the genes influencing OS within the signatures, such as FANCI and PRC1, are upregulated in CRC tumor vs. normal tissue. These signatures are highly associated with immune features, including macrophages, cytotoxicity, and wound healing. Furthermore, the corresponding proteins encoded by the genes within the signatures interact with each other and are functionally related.</p><p><strong>Conclusions: </strong>This study underscores the utility of gene signatures derived from transcriptomic-causal networks in patient stratification for effective therapies. The interpretability of the findings, supported by replication, highlights the potential of these signatures to identify patients likely to benefit from cetuximab or bevacizumab.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"9"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711454/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-024-00728-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Gene signatures derived from transcriptomic-causal networks offer potential for tailoring clinical care in cancer treatment by identifying predictive and prognostic biomarkers. This study aimed to uncover such signatures in metastatic colorectal cancer (CRC) patients to aid treatment decisions.

Methods: We constructed transcriptomic-causal networks and integrated gene interconnectivity into overall survival (OS) analysis to control for confounding genes. This integrative approach involved germline genotype and tumor RNA-seq data from 1165 metastatic CRC patients. The patients were enrolled in a randomized clinical trial receiving either cetuximab or bevacizumab in combination with chemotherapy. An external cohort of paired CRC normal and tumor samples, along with protein-protein interaction databases, was used for replication.

Results: We identify promising predictive and prognostic gene signatures from pre-treatment gene expression profiles. Our study discerns sets of genes, each forming a signature that collectively contribute to define patient subgroups with different prognosis and response to the therapies. Using an external cohort, we show that the genes influencing OS within the signatures, such as FANCI and PRC1, are upregulated in CRC tumor vs. normal tissue. These signatures are highly associated with immune features, including macrophages, cytotoxicity, and wound healing. Furthermore, the corresponding proteins encoded by the genes within the signatures interact with each other and are functionally related.

Conclusions: This study underscores the utility of gene signatures derived from transcriptomic-causal networks in patient stratification for effective therapies. The interpretability of the findings, supported by replication, highlights the potential of these signatures to identify patients likely to benefit from cetuximab or bevacizumab.

来自转录组因果网络的基因特征为结直肠癌患者分层提供有效的靶向治疗。
背景:来自转录组因果网络的基因特征通过识别预测性和预后生物标志物,为癌症治疗的临床护理提供了潜力。本研究旨在揭示转移性结直肠癌(CRC)患者的这些特征,以帮助治疗决策。方法:我们构建转录组因果网络,并将基因互联性整合到总生存(OS)分析中,以控制混杂基因。该综合方法涉及来自1165例转移性结直肠癌患者的种系基因型和肿瘤RNA-seq数据。患者被纳入一项随机临床试验,接受西妥昔单抗或贝伐单抗联合化疗。使用配对的CRC正常和肿瘤样本的外部队列,以及蛋白质-蛋白质相互作用数据库进行复制。结果:我们从治疗前基因表达谱中确定了有希望的预测和预后基因特征。我们的研究发现了一组基因,每组基因都形成了一个特征,共同有助于定义具有不同预后和对治疗反应的患者亚组。通过外部队列研究,我们发现影响OS的基因,如FANCI和PRC1,在CRC肿瘤中与正常组织相比表达上调。这些特征与免疫特征高度相关,包括巨噬细胞、细胞毒性和伤口愈合。此外,签名内基因编码的相应蛋白质相互作用,并在功能上相关。结论:这项研究强调了来自转录组因果网络的基因特征在患者分层中有效治疗的效用。这些发现的可解释性,以及重复性的支持,突出了这些特征在识别可能受益于西妥昔单抗或贝伐单抗的患者方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信