Artificial intelligence for hemodynamic monitoring with a wearable electrocardiogram monitor.

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Daphne E Schlesinger, Ridwan Alam, Roey Ringel, Eugene Pomerantsev, Srikanth Devireddy, Pinak Shah, Joseph Garasic, Collin M Stultz
{"title":"Artificial intelligence for hemodynamic monitoring with a wearable electrocardiogram monitor.","authors":"Daphne E Schlesinger, Ridwan Alam, Roey Ringel, Eugene Pomerantsev, Srikanth Devireddy, Pinak Shah, Joseph Garasic, Collin M Stultz","doi":"10.1038/s43856-024-00730-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The ability to non-invasively measure left atrial pressure would facilitate the identification of patients at risk of pulmonary congestion and guide proactive heart failure care. Wearable cardiac monitors, which record single-lead electrocardiogram data, provide information that can be leveraged to infer left atrial pressures.</p><p><strong>Methods: </strong>We developed a deep neural network using single-lead electrocardiogram data to determine when the left atrial pressure is elevated. The model was developed and internally evaluated using a cohort of 6739 samples from the Massachusetts General Hospital (MGH) and externally validated on a cohort of 4620 samples from a second institution. We then evaluated model on patch-monitor electrocardiographic data on a small prospective cohort.</p><p><strong>Results: </strong>The model achieves an area under the receiver operating characteristic curve of 0.80 for detecting elevated left atrial pressures on an internal holdout dataset from MGH and 0.76 on an external validation set from a second institution. A further prospective dataset was obtained using single-lead electrocardiogram data with a patch-monitor from patients who underwent right heart catheterization at MGH. Evaluation of the model on this dataset yielded an area under the receiver operating characteristic curve of 0.875 for identifying elevated left atrial pressures for electrocardiogram signals acquired close to the time of the right heart catheterization procedure.</p><p><strong>Conclusions: </strong>These results demonstrate the utility and the potential of ambulatory cardiac hemodynamic monitoring with electrocardiogram patch-monitors.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"4"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704156/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-024-00730-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The ability to non-invasively measure left atrial pressure would facilitate the identification of patients at risk of pulmonary congestion and guide proactive heart failure care. Wearable cardiac monitors, which record single-lead electrocardiogram data, provide information that can be leveraged to infer left atrial pressures.

Methods: We developed a deep neural network using single-lead electrocardiogram data to determine when the left atrial pressure is elevated. The model was developed and internally evaluated using a cohort of 6739 samples from the Massachusetts General Hospital (MGH) and externally validated on a cohort of 4620 samples from a second institution. We then evaluated model on patch-monitor electrocardiographic data on a small prospective cohort.

Results: The model achieves an area under the receiver operating characteristic curve of 0.80 for detecting elevated left atrial pressures on an internal holdout dataset from MGH and 0.76 on an external validation set from a second institution. A further prospective dataset was obtained using single-lead electrocardiogram data with a patch-monitor from patients who underwent right heart catheterization at MGH. Evaluation of the model on this dataset yielded an area under the receiver operating characteristic curve of 0.875 for identifying elevated left atrial pressures for electrocardiogram signals acquired close to the time of the right heart catheterization procedure.

Conclusions: These results demonstrate the utility and the potential of ambulatory cardiac hemodynamic monitoring with electrocardiogram patch-monitors.

可穿戴式心电图监测仪用于血流动力学监测的人工智能。
背景:无创测量左房压的能力将有助于识别有肺充血风险的患者,并指导积极的心力衰竭护理。可穿戴式心脏监护仪记录单导联心电图数据,提供的信息可用于推断左心房压力。方法:我们开发了一个深度神经网络,利用单导联心电图数据来确定左房压何时升高。该模型的开发和内部评估使用了来自马萨诸塞州总医院(MGH)的6739个样本队列,并在来自第二家机构的4620个样本队列中进行了外部验证。然后,我们在一个小的前瞻性队列中评估了贴片监测仪心电图数据模型。结果:该模型在MGH内部holdout数据集上检测左心房压力升高的受试者工作特征曲线下的面积为0.80,在第二家机构的外部验证集上检测左心房压力升高的面积为0.76。进一步的前瞻性数据集是利用在MGH接受右心导管插入术的患者的单导联心电图数据和贴片监测仪获得的。该模型在该数据集上的评估得出接受者工作特征曲线下的面积为0.875,用于识别接近右心导管手术时获得的心电图信号的左房压升高。结论:这些结果证明了利用心电图贴片监护仪进行动态心脏血流动力学监测的实用性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信