Uncertainty Quantification and Sensitivity Analysis for Non-invasive Model-Based Instantaneous Wave-Free Ratio Prediction.

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Caterina Dalmaso, Fredrik Eikeland Fossan, Anders Tjellaug Bråten, Lucas Omar Müller
{"title":"Uncertainty Quantification and Sensitivity Analysis for Non-invasive Model-Based Instantaneous Wave-Free Ratio Prediction.","authors":"Caterina Dalmaso, Fredrik Eikeland Fossan, Anders Tjellaug Bråten, Lucas Omar Müller","doi":"10.1002/cnm.3898","DOIUrl":null,"url":null,"abstract":"<p><p>The main objectives of this work are to validate a 1D-0D unsteady solver with a distributed stenosis model for the patient-specific estimation of resting haemodynamic indices and to assess the sensitivity of instantaneous wave-free ratio (iFR) predictions to uncertainties in input parameters. We considered 52 patients with stable coronary artery disease, for which 81 invasive iFR measurements were available. We validated the performance of our solver compared to 3D steady-state and transient results and invasive measurements. Next, we used a polynomial chaos approach to characterise the uncertainty in iFR predictions based on the inputs associated with boundary conditions (coronary flow, compliance and aortic/left ventricular pressures) and vascular geometry (radius). Agreement between iFR and the ratio between cardiac cycle averaged distal and aortic pressure waveforms (resting <math> <semantics> <mrow><msub><mi>P</mi> <mi>d</mi></msub> <mo>/</mo> <msub><mi>P</mi> <mi>a</mi></msub> </mrow> <annotation>$$ {P}_d/{P}_a $$</annotation></semantics> </math> ) obtained through 1D-0D and 3D models was satisfactory, with a bias of 0.0-0.005 (±0.016-0.026). The sensitivity analysis showed that iFR estimation is mostly affected by uncertainties in vascular geometry and coronary flow (steady-state parameters). In particular, our 1D-0D method overestimates invasive iFR measurements, with a bias of -0.036 (±0.101), indicating that better flow estimates could significantly improve our modelling pipeline. Conversely, we showed that standard pressure waveforms could be used for simulations, since the impact of uncertainties related to inlet-pressure waveforms on iFR prediction is negligible. Furthermore, while compliance is the most relevant transient parameter, its effect on iFR estimates is negligible compared to that of vascular geometry and flow. Finally, we observed a strong correlation between iFR and resting <math> <semantics> <mrow><msub><mi>P</mi> <mi>d</mi></msub> <mo>/</mo> <msub><mi>P</mi> <mi>a</mi></msub> </mrow> <annotation>$$ {P}_d/{P}_a $$</annotation></semantics> </math> , suggesting that steady-state simulations could replace unsteady simulations for iFR prediction.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 1","pages":"e3898"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706247/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cnm.3898","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The main objectives of this work are to validate a 1D-0D unsteady solver with a distributed stenosis model for the patient-specific estimation of resting haemodynamic indices and to assess the sensitivity of instantaneous wave-free ratio (iFR) predictions to uncertainties in input parameters. We considered 52 patients with stable coronary artery disease, for which 81 invasive iFR measurements were available. We validated the performance of our solver compared to 3D steady-state and transient results and invasive measurements. Next, we used a polynomial chaos approach to characterise the uncertainty in iFR predictions based on the inputs associated with boundary conditions (coronary flow, compliance and aortic/left ventricular pressures) and vascular geometry (radius). Agreement between iFR and the ratio between cardiac cycle averaged distal and aortic pressure waveforms (resting P d / P a $$ {P}_d/{P}_a $$ ) obtained through 1D-0D and 3D models was satisfactory, with a bias of 0.0-0.005 (±0.016-0.026). The sensitivity analysis showed that iFR estimation is mostly affected by uncertainties in vascular geometry and coronary flow (steady-state parameters). In particular, our 1D-0D method overestimates invasive iFR measurements, with a bias of -0.036 (±0.101), indicating that better flow estimates could significantly improve our modelling pipeline. Conversely, we showed that standard pressure waveforms could be used for simulations, since the impact of uncertainties related to inlet-pressure waveforms on iFR prediction is negligible. Furthermore, while compliance is the most relevant transient parameter, its effect on iFR estimates is negligible compared to that of vascular geometry and flow. Finally, we observed a strong correlation between iFR and resting P d / P a $$ {P}_d/{P}_a $$ , suggesting that steady-state simulations could replace unsteady simulations for iFR prediction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信