Replicator dynamics on heterogeneous networks.

IF 2.2 4区 数学 Q2 BIOLOGY
Junjie Li, Xiaomin Wang, Cong Li, Boyu Zhang
{"title":"Replicator dynamics on heterogeneous networks.","authors":"Junjie Li, Xiaomin Wang, Cong Li, Boyu Zhang","doi":"10.1007/s00285-024-02177-7","DOIUrl":null,"url":null,"abstract":"<p><p>Networked evolutionary game theory is a well-established framework for modeling the evolution of social behavior in structured populations. Most of the existing studies in this field have focused on 2-strategy games on heterogeneous networks or n-strategy games on regular networks. In this paper, we consider n-strategy games on arbitrary networks under the pairwise comparison updating rule. We show that under the limit of weak selection, the short-run behavior of the stochastic evolutionary process can be approximated by replicator equations with a transformed payoff matrix that involves both the average value and the variance of the degree distribution. In particular, strongly heterogeneous networks can facilitate the evolution of the payoff-dominant strategy. We then apply our results to analyze the evolutionarily stable strategies in an n-strategy minimum-effort game and two variants of the prisoner's dilemma game. We show that the cooperative equilibrium becomes evolutionarily stable when the average degree of the network is low and the variance of the degree distribution is high. Agent-based simulations on quasi-regular, exponential, and scale-free networks confirm that the dynamic behaviors of the stochastic evolutionary process can be well approximated by the trajectories of the replicator equations.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"90 2","pages":"16"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02177-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Networked evolutionary game theory is a well-established framework for modeling the evolution of social behavior in structured populations. Most of the existing studies in this field have focused on 2-strategy games on heterogeneous networks or n-strategy games on regular networks. In this paper, we consider n-strategy games on arbitrary networks under the pairwise comparison updating rule. We show that under the limit of weak selection, the short-run behavior of the stochastic evolutionary process can be approximated by replicator equations with a transformed payoff matrix that involves both the average value and the variance of the degree distribution. In particular, strongly heterogeneous networks can facilitate the evolution of the payoff-dominant strategy. We then apply our results to analyze the evolutionarily stable strategies in an n-strategy minimum-effort game and two variants of the prisoner's dilemma game. We show that the cooperative equilibrium becomes evolutionarily stable when the average degree of the network is low and the variance of the degree distribution is high. Agent-based simulations on quasi-regular, exponential, and scale-free networks confirm that the dynamic behaviors of the stochastic evolutionary process can be well approximated by the trajectories of the replicator equations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
120
审稿时长
6 months
期刊介绍: The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena. Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信