{"title":"Machine Learning Models With Hyperparameter Optimization for Voice Pathology Classification on Saarbrücken Voice Database.","authors":"Pervin Gulsen, Abdulkadir Gulsen, Mustafa Alci","doi":"10.1016/j.jvoice.2024.12.009","DOIUrl":null,"url":null,"abstract":"<p><p>Early diagnosis and referral are crucial in the treatment of voice disorders. Contemporary investigations have indicated the efficacy of voice pathology detection systems in significantly contributing to the evaluation of voice disorders, facilitating early diagnosis of such pathologies. These systems leverage machine learning methodologies, widely applied across diverse domains, and exhibit particular potential in the realm of voice pathology classification. However, machine learning models and performance metrics employed in these studies vary significantly, making it challenging to determine the optimal model for voice pathology classification. In this study, healthy and pathological voices were classified with state-of-the-art machine learning models, and the performance results of the models were compared. The voice samples employed in our research were sourced from the Saarbrücken Voice Database, a reputable German database. Feature extraction from voice signals was conducted using the Mel Frequency Cepstral Coefficients method. To assess and enhance the models' performance adequately, we employed hyperparameter optimization and implemented a 10-fold cross-validation approach. The outcomes revealed that the support vector machine model exhibited the highest accuracy, achieving 99.19% and 99.50% accuracies in the classification of male and female voice pathologies, respectively.</p>","PeriodicalId":49954,"journal":{"name":"Journal of Voice","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Voice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jvoice.2024.12.009","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Early diagnosis and referral are crucial in the treatment of voice disorders. Contemporary investigations have indicated the efficacy of voice pathology detection systems in significantly contributing to the evaluation of voice disorders, facilitating early diagnosis of such pathologies. These systems leverage machine learning methodologies, widely applied across diverse domains, and exhibit particular potential in the realm of voice pathology classification. However, machine learning models and performance metrics employed in these studies vary significantly, making it challenging to determine the optimal model for voice pathology classification. In this study, healthy and pathological voices were classified with state-of-the-art machine learning models, and the performance results of the models were compared. The voice samples employed in our research were sourced from the Saarbrücken Voice Database, a reputable German database. Feature extraction from voice signals was conducted using the Mel Frequency Cepstral Coefficients method. To assess and enhance the models' performance adequately, we employed hyperparameter optimization and implemented a 10-fold cross-validation approach. The outcomes revealed that the support vector machine model exhibited the highest accuracy, achieving 99.19% and 99.50% accuracies in the classification of male and female voice pathologies, respectively.
期刊介绍:
The Journal of Voice is widely regarded as the world''s premiere journal for voice medicine and research. This peer-reviewed publication is listed in Index Medicus and is indexed by the Institute for Scientific Information. The journal contains articles written by experts throughout the world on all topics in voice sciences, voice medicine and surgery, and speech-language pathologists'' management of voice-related problems. The journal includes clinical articles, clinical research, and laboratory research. Members of the Foundation receive the journal as a benefit of membership.