Interplay of acidic residues in the proton channel of E. coli cytochrome bd-I oxidase to promote oxygen reduction and NO release.

IF 3.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Raaif Siddeeque, Lucia Heger, Jan Kägi, Thorsten Friedrich, Frédéric Melin, Petra Hellwig
{"title":"Interplay of acidic residues in the proton channel of E. coli cytochrome bd-I oxidase to promote oxygen reduction and NO release.","authors":"Raaif Siddeeque, Lucia Heger, Jan Kägi, Thorsten Friedrich, Frédéric Melin, Petra Hellwig","doi":"10.1016/j.bbabio.2025.149537","DOIUrl":null,"url":null,"abstract":"<p><p>The reduction of oxygen to water is crucial to life under aerobic conditions. Cytochrome bd oxidases perform this reaction with a very high oxygen affinity. Members of this protein family are solely found in prokaryotes and some archaea playing an important role in bacterial virulence and antibiotic resistance. Here, we combine mutagenesis, electrocatalysis, nitric oxide binding and release experiments as well as FTIR spectroscopy to demonstrate that proton delivery to the active site is essentially rate limiting in Cyt bd-I electrocatalysis. D58 and D105 of subunit CydB are crucial residues in this proton path and communicate via a hydrogen bond network. Oxygen reduction depends on proton delivery to the active site, which also influences NO release.</p>","PeriodicalId":50731,"journal":{"name":"Biochimica et Biophysica Acta-Bioenergetics","volume":"1866 2","pages":"149537"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Bioenergetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbabio.2025.149537","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The reduction of oxygen to water is crucial to life under aerobic conditions. Cytochrome bd oxidases perform this reaction with a very high oxygen affinity. Members of this protein family are solely found in prokaryotes and some archaea playing an important role in bacterial virulence and antibiotic resistance. Here, we combine mutagenesis, electrocatalysis, nitric oxide binding and release experiments as well as FTIR spectroscopy to demonstrate that proton delivery to the active site is essentially rate limiting in Cyt bd-I electrocatalysis. D58 and D105 of subunit CydB are crucial residues in this proton path and communicate via a hydrogen bond network. Oxygen reduction depends on proton delivery to the active site, which also influences NO release.

大肠杆菌细胞色素bd-I氧化酶质子通道酸性残基促进氧还原和NO释放的相互作用。
氧还原成水对有氧条件下的生命至关重要。细胞色素bd氧化酶以非常高的氧亲和力进行该反应。该蛋白家族成员仅存在于原核生物和一些古细菌中,在细菌毒力和抗生素耐药性中起重要作用。在这里,我们结合诱变、电催化、一氧化氮结合和释放实验以及FTIR光谱来证明质子传递到活性位点在Cyt bd-I电催化中基本上是限速的。CydB亚基的D58和D105是这条质子路径上的关键残基,并通过氢键网络进行通信。氧还原依赖于质子传递到活性部位,这也影响NO的释放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochimica et Biophysica Acta-Bioenergetics
Biochimica et Biophysica Acta-Bioenergetics 生物-生化与分子生物学
CiteScore
9.50
自引率
7.00%
发文量
363
审稿时长
92 days
期刊介绍: BBA Bioenergetics covers the area of biological membranes involved in energy transfer and conversion. In particular, it focuses on the structures obtained by X-ray crystallography and other approaches, and molecular mechanisms of the components of photosynthesis, mitochondrial and bacterial respiration, oxidative phosphorylation, motility and transport. It spans applications of structural biology, molecular modeling, spectroscopy and biophysics in these systems, through bioenergetic aspects of mitochondrial biology including biomedicine aspects of energy metabolism in mitochondrial disorders, neurodegenerative diseases like Parkinson''s and Alzheimer''s, aging, diabetes and even cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信