Cong Shao, Xiaoxuan Wang, Jingying Dai, Honglian Dai
{"title":"Highly Selective AIEgen-Based \"Turn On\" Fluorescent Imaging for Inflammation Detection.","authors":"Cong Shao, Xiaoxuan Wang, Jingying Dai, Honglian Dai","doi":"10.1002/bio.70075","DOIUrl":null,"url":null,"abstract":"<p><p>Hypochlorous acid (HClO) is released by immune cells in the immune system, and it helps the body fight off infections and inflammation by killing bacteria, viruses, and other pathogens. However, tissue damage or apoptosis may also be induced by excess HClO. On this basis, we designed the probe TPE-NS by choosing tetraphenylethylene (TPE) as the luminescent unit and dimethylthiocarbamoyl chloride as the recognition site. By Gaussian's transition state calculations, HClO will cut off the photoinduced electron transfer (PET) effect of TPE-NS by hydrolysis reaction, thus emitting strong fluorescence. TPE-NS has rapid recognition and excellent specificity for HClO, and the limit of detection is 7.27 μM. Finally, TPE-NS was successfully used for the visualization of endogenous and exogenous HClO in cell experiments.</p>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"40 1","pages":"e70075"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Luminescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/bio.70075","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hypochlorous acid (HClO) is released by immune cells in the immune system, and it helps the body fight off infections and inflammation by killing bacteria, viruses, and other pathogens. However, tissue damage or apoptosis may also be induced by excess HClO. On this basis, we designed the probe TPE-NS by choosing tetraphenylethylene (TPE) as the luminescent unit and dimethylthiocarbamoyl chloride as the recognition site. By Gaussian's transition state calculations, HClO will cut off the photoinduced electron transfer (PET) effect of TPE-NS by hydrolysis reaction, thus emitting strong fluorescence. TPE-NS has rapid recognition and excellent specificity for HClO, and the limit of detection is 7.27 μM. Finally, TPE-NS was successfully used for the visualization of endogenous and exogenous HClO in cell experiments.
期刊介绍:
Luminescence provides a forum for the publication of original scientific papers, short communications, technical notes and reviews on fundamental and applied aspects of all forms of luminescence, including bioluminescence, chemiluminescence, electrochemiluminescence, sonoluminescence, triboluminescence, fluorescence, time-resolved fluorescence and phosphorescence. Luminescence publishes papers on assays and analytical methods, instrumentation, mechanistic and synthetic studies, basic biology and chemistry.
Luminescence also publishes details of forthcoming meetings, information on new products, and book reviews. A special feature of the Journal is surveys of the recent literature on selected topics in luminescence.