Neurocan regulates axon initial segment organization and neuronal activity

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
David Baidoe-Ansah , Hadi Mirzapourdelavar , Stepan Aleshin , Björn Hendrik Schott , Constanze Seidenbecher , Rahul Kaushik , Alexander Dityatev
{"title":"Neurocan regulates axon initial segment organization and neuronal activity","authors":"David Baidoe-Ansah ,&nbsp;Hadi Mirzapourdelavar ,&nbsp;Stepan Aleshin ,&nbsp;Björn Hendrik Schott ,&nbsp;Constanze Seidenbecher ,&nbsp;Rahul Kaushik ,&nbsp;Alexander Dityatev","doi":"10.1016/j.matbio.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>The neural extracellular matrix (ECM) accumulates in the form of perineuronal nets (PNNs), particularly around fast-spiking GABAergic interneurons in the cortex and hippocampus, but also around synapses and in association with the axon initial segments (AIS) and nodes of Ranvier. Increasing evidence highlights the role of Neurocan (Ncan), a brain-specific component of ECM, in the pathophysiology of neuropsychiatric disorders like bipolar disorder and schizophrenia. Ncan localizes at PNNs, perisynaptically, and at the nodes of Ranvier and the AIS, highlighting its potential role in regulating axonal excitability. Here, we used knockdown and knockout approaches in mouse primary cortical neurons in combination with immunocytochemistry, Western blotting and electrophysiological techniques to characterize the role of Ncan in the organization of PNNs and AISs and regulation of neuronal activity. We found that reduced Ncan levels led to remodeling of PNNs around neurons via upregulation of aggrecan mRNA and protein levels, increased expression of activity-dependent c-Fos and FosB genes and elevated spontaneous synaptic activity. The latter correlated with increased levels of ankyrin-G in the AIS, particularly in excitatory neurons, and with the elevated expression of Na<sub>v</sub>1.6 channels. Our results suggest that Ncan regulates the expression of key proteins in PNNs and AISs and provide new insights into its role in fine-tuning neuronal functions.</div></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"136 ","pages":"Pages 22-35"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0945053X25000010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The neural extracellular matrix (ECM) accumulates in the form of perineuronal nets (PNNs), particularly around fast-spiking GABAergic interneurons in the cortex and hippocampus, but also around synapses and in association with the axon initial segments (AIS) and nodes of Ranvier. Increasing evidence highlights the role of Neurocan (Ncan), a brain-specific component of ECM, in the pathophysiology of neuropsychiatric disorders like bipolar disorder and schizophrenia. Ncan localizes at PNNs, perisynaptically, and at the nodes of Ranvier and the AIS, highlighting its potential role in regulating axonal excitability. Here, we used knockdown and knockout approaches in mouse primary cortical neurons in combination with immunocytochemistry, Western blotting and electrophysiological techniques to characterize the role of Ncan in the organization of PNNs and AISs and regulation of neuronal activity. We found that reduced Ncan levels led to remodeling of PNNs around neurons via upregulation of aggrecan mRNA and protein levels, increased expression of activity-dependent c-Fos and FosB genes and elevated spontaneous synaptic activity. The latter correlated with increased levels of ankyrin-G in the AIS, particularly in excitatory neurons, and with the elevated expression of Nav1.6 channels. Our results suggest that Ncan regulates the expression of key proteins in PNNs and AISs and provide new insights into its role in fine-tuning neuronal functions.
Neurocan调节轴突初始段组织和神经元活动。
神经细胞外基质(ECM)以神经元周围网(PNNs)的形式积累,特别是在皮层和海马的快速峰值gaba能中间神经元周围,但也在突触周围以及与轴突初始段(AIS)和Ranvier节点相关。越来越多的证据强调了神经can (Ncan)在双相情感障碍和精神分裂症等神经精神疾病的病理生理学中的作用,神经can是ECM的一种脑特异性成分。Ncan定位于pnn,突触周围,Ranvier和AIS节点,突出了其在调节轴突兴奋性中的潜在作用。本研究采用敲除和敲除小鼠原代皮质神经元的方法,结合免疫细胞化学、western blotting和电生理技术来表征Ncan在pnn和ais的组织以及神经元活性上调中的作用。我们发现,Ncan水平的降低通过Aggrecan mRNA和蛋白水平的上调、活性依赖性c-Fos和FosB基因的表达增加以及自发突触活性的升高,导致神经元周围pnn的重塑。后者与AIS中锚定蛋白g水平升高,特别是兴奋性神经元中锚定蛋白g水平升高以及Nav1.6通道表达升高相关。我们的研究结果表明,Ncan调节pnn和ais中关键蛋白的表达,并为其在微调神经元功能中的作用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matrix Biology
Matrix Biology 生物-生化与分子生物学
CiteScore
11.40
自引率
4.30%
发文量
77
审稿时长
45 days
期刊介绍: Matrix Biology (established in 1980 as Collagen and Related Research) is a cutting-edge journal that is devoted to publishing the latest results in matrix biology research. We welcome articles that reside at the nexus of understanding the cellular and molecular pathophysiology of the extracellular matrix. Matrix Biology focusses on solving elusive questions, opening new avenues of thought and discovery, and challenging longstanding biological paradigms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信