Antidiabetic phytochemicals: an overview of medicinal plants and their bioactive compounds in diabetes mellitus treatment.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yenework Nigussie Ashagrie, Kundan Kumar Chaubey, Mesfin Getachew Tadesse, Deen Dayal, Rakesh Kumar Bachheti, Nishant Rai, Atreyi Pramanik, Sorabh Lakhanpal, Anuj Kandwal, Archana Bachheti
{"title":"Antidiabetic phytochemicals: an overview of medicinal plants and their bioactive compounds in diabetes mellitus treatment.","authors":"Yenework Nigussie Ashagrie, Kundan Kumar Chaubey, Mesfin Getachew Tadesse, Deen Dayal, Rakesh Kumar Bachheti, Nishant Rai, Atreyi Pramanik, Sorabh Lakhanpal, Anuj Kandwal, Archana Bachheti","doi":"10.1515/znc-2024-0192","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) is a group of metabolic disorders characterized by hyperglycemia due to insufficient insulin secretion or action. Contributing factors include genetic predisposition, obesity, family history, inactivity, and environmental risks. Type 2 diabetes mellitus (T2DM), the most common form, involves impaired insulin secretion by pancreatic β-cells, leading to insulin resistance. By 2045, it is projected that India and China will have approximately 134.3 and 110.8 million diabetic individuals, respectively. Although synthetic drugs are effective in managing DM, they often come with side effects. Consequently, plant-based phytochemicals with antidiabetic properties are gaining attention. Research indicates that around 115 medicinal plants (MPs) have antidiabetic effects, particularly those from the Fabaceae, Liliaceae, and Lamiaceae families. Bioactive compounds like alkaloids, triterpenoids, flavonoids, and phenolics are known to combat DM. Traditional medicinal systems, particularly in developing countries, offer effective DM management. This review highlights the importance of MPs and their bioactive compounds in treating diabetes and underscores the need for further research to commercialize plant-based antidiabetic drugs.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/znc-2024-0192","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes mellitus (DM) is a group of metabolic disorders characterized by hyperglycemia due to insufficient insulin secretion or action. Contributing factors include genetic predisposition, obesity, family history, inactivity, and environmental risks. Type 2 diabetes mellitus (T2DM), the most common form, involves impaired insulin secretion by pancreatic β-cells, leading to insulin resistance. By 2045, it is projected that India and China will have approximately 134.3 and 110.8 million diabetic individuals, respectively. Although synthetic drugs are effective in managing DM, they often come with side effects. Consequently, plant-based phytochemicals with antidiabetic properties are gaining attention. Research indicates that around 115 medicinal plants (MPs) have antidiabetic effects, particularly those from the Fabaceae, Liliaceae, and Lamiaceae families. Bioactive compounds like alkaloids, triterpenoids, flavonoids, and phenolics are known to combat DM. Traditional medicinal systems, particularly in developing countries, offer effective DM management. This review highlights the importance of MPs and their bioactive compounds in treating diabetes and underscores the need for further research to commercialize plant-based antidiabetic drugs.

抗糖尿病植物化学物质:药用植物及其生物活性化合物在糖尿病治疗中的综述。
糖尿病(DM)是一组以胰岛素分泌或作用不足引起高血糖为特征的代谢性疾病。影响因素包括遗传易感性、肥胖、家族史、缺乏运动和环境风险。2型糖尿病(T2DM)是最常见的形式,涉及胰腺β细胞胰岛素分泌受损,导致胰岛素抵抗。预计到2045年,印度和中国的糖尿病患者将分别达到134.3亿和1108亿 。虽然合成药物在治疗糖尿病方面是有效的,但它们往往伴随着副作用。因此,以植物为基础的具有抗糖尿病特性的植物化学物质正受到人们的关注。研究表明,大约115种药用植物(MPs)具有抗糖尿病作用,特别是来自豆科,百合科和兰科的植物。生物碱、三萜、黄酮类化合物和酚类物质等生物活性化合物已知可以对抗糖尿病。特别是在发展中国家,传统医疗系统提供了有效的糖尿病管理。这篇综述强调了MPs及其生物活性化合物在治疗糖尿病中的重要性,并强调了进一步研究以商业化植物性降糖药的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
5.00%
发文量
55
期刊介绍: A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) is an international scientific journal and a community resource for the emerging field of natural and natural-like products. The journal publishes original research on the isolation (including structure elucidation), bio-chemical synthesis and bioactivities of natural products, their biochemistry, pharmacology, biotechnology, and their biological activity and innovative developed computational methods for predicting the structure and/or function of natural products. A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) welcomes research papers in fields on the chemistry-biology boundary which address scientific ideas and approaches to generate and understand natural compounds on a molecular level and/or use them to stimulate and manipulate biological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信