Maternal exposure to purified versus grain-based diet during early lactation in mice affects offspring growth and reduces responsivity to Western-style diet challenge in adulthood.
IF 1.8 4区 医学Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
M Rakhshandehroo, L Harvey, A de Bruin, E Timmer, J Lohr, S Tims, L Schipper
{"title":"Maternal exposure to purified versus grain-based diet during early lactation in mice affects offspring growth and reduces responsivity to Western-style diet challenge in adulthood.","authors":"M Rakhshandehroo, L Harvey, A de Bruin, E Timmer, J Lohr, S Tims, L Schipper","doi":"10.1017/S2040174424000436","DOIUrl":null,"url":null,"abstract":"<p><p>The nutritional environment during fetal and early postnatal life has a long-term impact on growth, development, and metabolic health of the offspring, a process termed \"nutritional programming.\" Rodent models studying programming effects of nutritional interventions use either purified or grain-based rodent diets as background diets. However, the impact of these diets on phenotypic outcomes in these models has not been comprehensively investigated. We used a previously validated (C57BL/6J) mouse model to investigate the effects of infant milk formula (IMF) interventions on nutritional programming. Specifically, we investigated the effects of maternal diet type (i.e., grain-based vs purified) during early lactation and prior to the intervention on offspring growth, metabolic phenotype, and gut microbiota profile. Maternal exposure to purified diet led to an increased post-weaning growth velocity in the offspring and reduced adult diet-induced obesity. Further, maternal exposure to purified diet reduced the offspring gut microbiota diversity and modified its composition post-weaning. These data not only reinforce the notion that maternal nutrition significantly influences the programming of offspring vulnerability to an obesogenic diet in adulthood but emphasizes the importance of careful selection of standard background diet type when designing any preclinical study with (early life) nutritional interventions.</p>","PeriodicalId":49167,"journal":{"name":"Journal of Developmental Origins of Health and Disease","volume":"16 ","pages":"e3"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Origins of Health and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S2040174424000436","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
The nutritional environment during fetal and early postnatal life has a long-term impact on growth, development, and metabolic health of the offspring, a process termed "nutritional programming." Rodent models studying programming effects of nutritional interventions use either purified or grain-based rodent diets as background diets. However, the impact of these diets on phenotypic outcomes in these models has not been comprehensively investigated. We used a previously validated (C57BL/6J) mouse model to investigate the effects of infant milk formula (IMF) interventions on nutritional programming. Specifically, we investigated the effects of maternal diet type (i.e., grain-based vs purified) during early lactation and prior to the intervention on offspring growth, metabolic phenotype, and gut microbiota profile. Maternal exposure to purified diet led to an increased post-weaning growth velocity in the offspring and reduced adult diet-induced obesity. Further, maternal exposure to purified diet reduced the offspring gut microbiota diversity and modified its composition post-weaning. These data not only reinforce the notion that maternal nutrition significantly influences the programming of offspring vulnerability to an obesogenic diet in adulthood but emphasizes the importance of careful selection of standard background diet type when designing any preclinical study with (early life) nutritional interventions.
期刊介绍:
JDOHaD publishes leading research in the field of Developmental Origins of Health and Disease (DOHaD). The Journal focuses on the environment during early pre-natal and post-natal animal and human development, interactions between environmental and genetic factors, including environmental toxicants, and their influence on health and disease risk throughout the lifespan. JDOHaD publishes work on developmental programming, fetal and neonatal biology and physiology, early life nutrition, especially during the first 1,000 days of life, human ecology and evolution and Gene-Environment Interactions.
JDOHaD also accepts manuscripts that address the social determinants or education of health and disease risk as they relate to the early life period, as well as the economic and health care costs of a poor start to life. Accordingly, JDOHaD is multi-disciplinary, with contributions from basic scientists working in the fields of physiology, biochemistry and nutrition, endocrinology and metabolism, developmental biology, molecular biology/ epigenetics, human biology/ anthropology, and evolutionary developmental biology. Moreover clinicians, nutritionists, epidemiologists, social scientists, economists, public health specialists and policy makers are very welcome to submit manuscripts.
The journal includes original research articles, short communications and reviews, and has regular themed issues, with guest editors; it is also a platform for conference/workshop reports, and for opinion, comment and interaction.