Elizaveta Kondrateva, Anton Gurkov, Yaroslav Rzhechitskiy, Alexandra Saranchina, Anastasiia Diagileva, Polina Drozdova, Kseniya Vereshchagina, Zhanna Shatilina, Inna Sokolova, Maxim Timofeyev
{"title":"UV Sensitivities of Two Littoral and Two Deep-Freshwater Amphipods (Amphipoda, Crustacea) Reflect Their Preferred Depths in the Ancient Lake Baikal.","authors":"Elizaveta Kondrateva, Anton Gurkov, Yaroslav Rzhechitskiy, Alexandra Saranchina, Anastasiia Diagileva, Polina Drozdova, Kseniya Vereshchagina, Zhanna Shatilina, Inna Sokolova, Maxim Timofeyev","doi":"10.3390/biology13121004","DOIUrl":null,"url":null,"abstract":"<p><p>Solar ultraviolet (UV) is among the most important ecological factors shaping the composition of biota on the planet's surface, including the upper layers of waterbodies. Inhabitants of dark environments recently evolving from surface organisms provide natural opportunities to study the evolutionary losses of UV adaptation mechanisms and better understand how those mechanisms function at the biochemical level. The ancient Lake Baikal is the only freshwater reservoir where deep-water fauna emerged, and its diverse endemic amphipods (Amphipoda, Crustacea) now inhabit the whole range from highly transparent littoral to dark depths of over 1600 m, which makes them a convenient model to study UV adaptation. With 10-day-long laboratory exposures, we show that adults of deep-water Baikal amphipods <i>Ommatogammarus flavus</i> and <i>O. albinus</i> indeed have high sensitivity to environmentally relevant UV levels in contrast to littoral species <i>Eulimnogammarus cyaneus</i> and <i>E. verrucosus</i>. The UV intolerance was more pronounced in deeper-dwelling <i>O. albinus</i> and was partially explainable by lower levels of carotenoids and carotenoid-binding proteins. Signs of oxidative stress were not found but UV-B specifically seemingly led to the accumulation of toxic compounds. Overall, the obtained results demonstrate that UV is an important factor limiting the distribution of deep-water amphipods into the littoral zone of Lake Baikal.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"13 12","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology13121004","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Solar ultraviolet (UV) is among the most important ecological factors shaping the composition of biota on the planet's surface, including the upper layers of waterbodies. Inhabitants of dark environments recently evolving from surface organisms provide natural opportunities to study the evolutionary losses of UV adaptation mechanisms and better understand how those mechanisms function at the biochemical level. The ancient Lake Baikal is the only freshwater reservoir where deep-water fauna emerged, and its diverse endemic amphipods (Amphipoda, Crustacea) now inhabit the whole range from highly transparent littoral to dark depths of over 1600 m, which makes them a convenient model to study UV adaptation. With 10-day-long laboratory exposures, we show that adults of deep-water Baikal amphipods Ommatogammarus flavus and O. albinus indeed have high sensitivity to environmentally relevant UV levels in contrast to littoral species Eulimnogammarus cyaneus and E. verrucosus. The UV intolerance was more pronounced in deeper-dwelling O. albinus and was partially explainable by lower levels of carotenoids and carotenoid-binding proteins. Signs of oxidative stress were not found but UV-B specifically seemingly led to the accumulation of toxic compounds. Overall, the obtained results demonstrate that UV is an important factor limiting the distribution of deep-water amphipods into the littoral zone of Lake Baikal.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.