Lin Li, Xia Wang, Yanli Yang, Siyu Wang, Kelong Chen, Ni Zhang
{"title":"The Response Mechanism of the cbbM Carbon Sequestration Microbial Community in the Alpine Wetlands of Qinghai Lake to Changes in Precipitation.","authors":"Lin Li, Xia Wang, Yanli Yang, Siyu Wang, Kelong Chen, Ni Zhang","doi":"10.3390/biology13121090","DOIUrl":null,"url":null,"abstract":"<p><p>The dramatic changes in precipitation patterns on the Tibetan Plateau affected the carbon-sequestering microbial communities within wetland ecosystems, which were closely related to the responses and adaptation mechanisms of alpine wetland ecosystems to climate change. This study focused on wetland soils subjected to different precipitation gradient treatments and employed high-throughput sequencing technology to analyze the soil cbbM carbon-sequestering microbial communities. The results indicated that Proteobacteria were the dominant microbial community responsible for carbon sequestration in the Wayan Mountain wetland. A 50% increase in precipitation significantly raised the soil moisture content, while a 50% reduction and a 25% increase in precipitation notably enhanced the total soil carbon content. The 25% reduction in precipitation increased the differences in microbial community composition, whereas both the 50% increase and the 50% reduction in precipitation decreased these differences. The soil pH and temperature had the most significant impact on the carbon-sequestering microbial communities. In conclusion, changes in precipitation affect the cbbM carbon sequestration characteristics of soil microbial communities, and a moderate reduction in water input benefited carbon sequestration in wetlands.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"13 12","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673386/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology13121090","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The dramatic changes in precipitation patterns on the Tibetan Plateau affected the carbon-sequestering microbial communities within wetland ecosystems, which were closely related to the responses and adaptation mechanisms of alpine wetland ecosystems to climate change. This study focused on wetland soils subjected to different precipitation gradient treatments and employed high-throughput sequencing technology to analyze the soil cbbM carbon-sequestering microbial communities. The results indicated that Proteobacteria were the dominant microbial community responsible for carbon sequestration in the Wayan Mountain wetland. A 50% increase in precipitation significantly raised the soil moisture content, while a 50% reduction and a 25% increase in precipitation notably enhanced the total soil carbon content. The 25% reduction in precipitation increased the differences in microbial community composition, whereas both the 50% increase and the 50% reduction in precipitation decreased these differences. The soil pH and temperature had the most significant impact on the carbon-sequestering microbial communities. In conclusion, changes in precipitation affect the cbbM carbon sequestration characteristics of soil microbial communities, and a moderate reduction in water input benefited carbon sequestration in wetlands.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.