The Development of Prenatal Muscle Satellite Cells (MuSCs) and Their Epigenetic Modifications During Skeletal Muscle Development in Yak Fetus.

IF 3.6 3区 生物学 Q1 BIOLOGY
Guoxiong Nan, Wei Peng, Shangrong Xu, Guowen Wang, Jun Zhang
{"title":"The Development of Prenatal Muscle Satellite Cells (MuSCs) and Their Epigenetic Modifications During Skeletal Muscle Development in Yak Fetus.","authors":"Guoxiong Nan, Wei Peng, Shangrong Xu, Guowen Wang, Jun Zhang","doi":"10.3390/biology13121091","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate prenatal muscle satellite cell (MuSC) development and the associated epigenetic modifications in yak. Here, we conducted morphological and protein co-localization analyses of fetal longissimus dorsi muscle at various developmental stages using histology and immunofluorescence staining methods. Our study observed that primary muscle fibers began forming at 40 days of gestation, fully developed by 11 weeks, and secondary muscle fibers were predominantly formed by around 105 days. Throughout development, MuSCs were mainly located between the muscle fiber membrane and the basement membrane, acting as a reserve for the stem cell pool. MuSCs appeared within myotubes only during critical phases of primary and secondary muscle fiber formation. The proliferation of MuSCs gradually decreases until birth. MuSCs with 5mC modification show a trend of increasing first and then decreasing. MuSCs with 5hmC modification also present a dynamic change trend. The 41st day and 11th week are the critical periods for the changes of both. From the 11th week to around the 110th day of gestation, the modification effect of histone H3K4me3 is crucial for MuSCs during the development of the fetal longissimus dorsi muscle. Combined, our data identify key time points for yak fetal skeletal muscle growth and development and demonstrate that DNA methylation and histone modifications in MuSCs are closely related to this process, offering a valuable basis for future research into the molecular mechanisms underlying yak muscle development.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"13 12","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673279/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology13121091","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate prenatal muscle satellite cell (MuSC) development and the associated epigenetic modifications in yak. Here, we conducted morphological and protein co-localization analyses of fetal longissimus dorsi muscle at various developmental stages using histology and immunofluorescence staining methods. Our study observed that primary muscle fibers began forming at 40 days of gestation, fully developed by 11 weeks, and secondary muscle fibers were predominantly formed by around 105 days. Throughout development, MuSCs were mainly located between the muscle fiber membrane and the basement membrane, acting as a reserve for the stem cell pool. MuSCs appeared within myotubes only during critical phases of primary and secondary muscle fiber formation. The proliferation of MuSCs gradually decreases until birth. MuSCs with 5mC modification show a trend of increasing first and then decreasing. MuSCs with 5hmC modification also present a dynamic change trend. The 41st day and 11th week are the critical periods for the changes of both. From the 11th week to around the 110th day of gestation, the modification effect of histone H3K4me3 is crucial for MuSCs during the development of the fetal longissimus dorsi muscle. Combined, our data identify key time points for yak fetal skeletal muscle growth and development and demonstrate that DNA methylation and histone modifications in MuSCs are closely related to this process, offering a valuable basis for future research into the molecular mechanisms underlying yak muscle development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信