OSI-027 as a Potential Drug Candidate Targeting Upregulated Hub Protein TAF1 in Potential Mechanism of Sinonasal Squamous Cell Carcinoma: Insights from Proteomics and Molecular Docking.

IF 3.6 3区 生物学 Q1 BIOLOGY
Watcharapong Panthong, Chamsai Pientong, Thawaree Nukpook, Chukkris Heawchaiyaphum, Sirinart Aromseree, Tipaya Ekalaksananan
{"title":"OSI-027 as a Potential Drug Candidate Targeting Upregulated Hub Protein TAF1 in Potential Mechanism of Sinonasal Squamous Cell Carcinoma: Insights from Proteomics and Molecular Docking.","authors":"Watcharapong Panthong, Chamsai Pientong, Thawaree Nukpook, Chukkris Heawchaiyaphum, Sirinart Aromseree, Tipaya Ekalaksananan","doi":"10.3390/biology13121089","DOIUrl":null,"url":null,"abstract":"<p><p>Sinonasal squamous cell carcinoma (SNSCC) is a rare tumor with high mortality and recurrence rates. However, SNSCC carcinogenesis mechanisms and potential therapeutic drugs have not been fully elucidated. This study investigated the key molecular mechanisms and hub proteins involved in SNSCC carcinogenesis using proteomics and bioinformatic analysis. Dysregulated proteins were validated by RT-qPCR in SNSCC and nasal polyp (NP) tissues. Proteomic analysis revealed that differentially expressed proteins were clustered using MCODE scores ≥ 4 into three modules. The specific hub proteins in each module were analyzed in carcinogenesis pathways using STRING, highlighting potential mechanisms of histone modification and spliceosome dysregulation. Spliceosome components SNRNP200 and SF3A3 were significantly downregulated in SNSCC by RT-qPCR. Web-based applications L1000CDS<sup>2</sup> and iLINCS were applied to identify 10 potential repurposable drugs that could reverse the gene expression pattern associated with SNSCC. Docking studies of TAF1, a protein in histone modification, with these 10 small molecule inhibitors indicated OSI-027 to be the most promising due to its strong binding interactions with key residues. These findings suggest that hub proteins involved in the underlying mechanism of SNSCC carcinogenesis may serve as valuable targets for drug development, with OSI-027 emerging as a novel candidate against TAF1 in SNSCC.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"13 12","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673211/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology13121089","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sinonasal squamous cell carcinoma (SNSCC) is a rare tumor with high mortality and recurrence rates. However, SNSCC carcinogenesis mechanisms and potential therapeutic drugs have not been fully elucidated. This study investigated the key molecular mechanisms and hub proteins involved in SNSCC carcinogenesis using proteomics and bioinformatic analysis. Dysregulated proteins were validated by RT-qPCR in SNSCC and nasal polyp (NP) tissues. Proteomic analysis revealed that differentially expressed proteins were clustered using MCODE scores ≥ 4 into three modules. The specific hub proteins in each module were analyzed in carcinogenesis pathways using STRING, highlighting potential mechanisms of histone modification and spliceosome dysregulation. Spliceosome components SNRNP200 and SF3A3 were significantly downregulated in SNSCC by RT-qPCR. Web-based applications L1000CDS2 and iLINCS were applied to identify 10 potential repurposable drugs that could reverse the gene expression pattern associated with SNSCC. Docking studies of TAF1, a protein in histone modification, with these 10 small molecule inhibitors indicated OSI-027 to be the most promising due to its strong binding interactions with key residues. These findings suggest that hub proteins involved in the underlying mechanism of SNSCC carcinogenesis may serve as valuable targets for drug development, with OSI-027 emerging as a novel candidate against TAF1 in SNSCC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信