Deciphering Drought Resilience in Solanaceae Crops: Unraveling Molecular and Genetic Mechanisms.

IF 3.6 3区 生物学 Q1 BIOLOGY
Xin Pang, Jun Chen, Linzhi Li, Wenjuan Huang, Jia Liu
{"title":"Deciphering Drought Resilience in Solanaceae Crops: Unraveling Molecular and Genetic Mechanisms.","authors":"Xin Pang, Jun Chen, Linzhi Li, Wenjuan Huang, Jia Liu","doi":"10.3390/biology13121076","DOIUrl":null,"url":null,"abstract":"<p><p>The Solanaceae family, which includes vital crops such as tomatoes, peppers, eggplants, and potatoes, is increasingly impacted by drought due to climate change. Recent research has concentrated on unraveling the molecular mechanisms behind drought resistance in these crops, with a focus on abscisic acid (ABA) signaling pathways, transcription factors (TFs) like MYB (Myeloblastosis), WRKY (WRKY DNA-binding protein), and NAC (NAM, ATAF1/2, and CUC2- NAM: No Apical Meristem, ATAF1/2, and CUC2: Cup-shaped Cotyledon), and the omics approaches. Moreover, transcriptome sequencing (RNA-seq) has been instrumental in identifying differentially expressed genes (DEGs) crucial for drought adaptation. Proteomics studies further reveal changes in protein expression under drought conditions, elucidating stress response mechanisms. Additionally, microRNAs (miRNAs) have been identified as key regulators in drought response. Advances in proteomics and transcriptomics have highlighted key proteins and genes that respond to drought stress, offering new insights into drought tolerance. To address the challenge of drought, future research should emphasize the development of drought-resistant varieties through precision breeding techniques such as gene editing, marker-assisted selection (MAS), and the integration of artificial intelligence. Additionally, the adoption of environmentally sustainable cultivation practices, including precision irrigation and the use of anti-drought agents, is crucial for improving water-use efficiency and crop resilience. International collaboration and data sharing will be essential to accelerate progress and ensure global food security in increasingly arid conditions. These efforts will enable Solanaceae crops to adapt the challenges posed by climate change, ensuring their productivity and sustainability.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"13 12","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673024/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology13121076","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Solanaceae family, which includes vital crops such as tomatoes, peppers, eggplants, and potatoes, is increasingly impacted by drought due to climate change. Recent research has concentrated on unraveling the molecular mechanisms behind drought resistance in these crops, with a focus on abscisic acid (ABA) signaling pathways, transcription factors (TFs) like MYB (Myeloblastosis), WRKY (WRKY DNA-binding protein), and NAC (NAM, ATAF1/2, and CUC2- NAM: No Apical Meristem, ATAF1/2, and CUC2: Cup-shaped Cotyledon), and the omics approaches. Moreover, transcriptome sequencing (RNA-seq) has been instrumental in identifying differentially expressed genes (DEGs) crucial for drought adaptation. Proteomics studies further reveal changes in protein expression under drought conditions, elucidating stress response mechanisms. Additionally, microRNAs (miRNAs) have been identified as key regulators in drought response. Advances in proteomics and transcriptomics have highlighted key proteins and genes that respond to drought stress, offering new insights into drought tolerance. To address the challenge of drought, future research should emphasize the development of drought-resistant varieties through precision breeding techniques such as gene editing, marker-assisted selection (MAS), and the integration of artificial intelligence. Additionally, the adoption of environmentally sustainable cultivation practices, including precision irrigation and the use of anti-drought agents, is crucial for improving water-use efficiency and crop resilience. International collaboration and data sharing will be essential to accelerate progress and ensure global food security in increasingly arid conditions. These efforts will enable Solanaceae crops to adapt the challenges posed by climate change, ensuring their productivity and sustainability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信