Characterization of Major Cell-Wall-Degrading Enzymes Secreted by Diaporthe spp. Isolate Z1-1N Causing Postharvest Fruit Rot in Kiwifruit in China.

IF 3.6 3区 生物学 Q1 BIOLOGY
Li-Zhen Ling, Ling-Ling Chen, Jia-Yu Ma, Chao-Yue Li, Dong-Ru Zhang, Xiao-Di Hu, Shu-Dong Zhang
{"title":"Characterization of Major Cell-Wall-Degrading Enzymes Secreted by <i>Diaporthe</i> spp. Isolate Z1-1N Causing Postharvest Fruit Rot in Kiwifruit in China.","authors":"Li-Zhen Ling, Ling-Ling Chen, Jia-Yu Ma, Chao-Yue Li, Dong-Ru Zhang, Xiao-Di Hu, Shu-Dong Zhang","doi":"10.3390/biology13121006","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogen-induced fruit decay is a significant threat to the kiwifruit industry, leading to considerable economic losses annually. The cell-wall-degrading enzymes (CWDEs) secreted by these pathogens are crucial for penetrating the cell wall and accessing nutrients. Among them, <i>Diaporthe</i> species are recognized as major causal agents of soft rot in kiwifruit, yet their pathogenic mechanisms are not well understood. In this study, we explored the production of various CWDEs secreted by <i>Diaporthe</i> Z1-1N, including polygalacturonase (PG), polymethylgalacturonase (PMG), polygalacturonic acid transeliminase (PGTE), pectin methyltranseliminase (PMTE), endoglucanase (Cx), and β-glucosidase (β-glu), both in liquid cultures and within infected kiwifruit tissues. Our findings revealed significant activities of two pectinases (PG and PMG) and cellulases (Cx and β-glu) in the infected tissues. In contrast, very low levels of PMTE and PGTE activities were observed under the same conditions. When orange pectin served as the carbon source, PG and PMG showed notable activities, while PMTE and PGTE remained inactive. Moreover, the activities of Cx and β-glu significantly decreased by more than 63 times in the liquid medium with carboxymethyl cellulose (CMC) as the carbon source compared to their levels in infected kiwifruit. A further analysis indicated that the necrotic lesions produced by pectinase extracts were larger than those produced by cellulase extracts. Notably, four enzymes-PG, PMG, Cx, and β-glu-exhibited high activities on the third or fourth day post-infection with <i>Diaporthe</i> Z1-1N. These results suggest that <i>Diaporthe</i> Z1-1N secretes a range of CWDEs that contribute to kiwifruit decay by enhancing the activities of PG, PMG, Cx, and β-glu. This study sheds light on the pathogenicity of <i>Diaporthe</i> in kiwifruit and highlights the importance of these enzymes in the decay process.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"13 12","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673422/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology13121006","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pathogen-induced fruit decay is a significant threat to the kiwifruit industry, leading to considerable economic losses annually. The cell-wall-degrading enzymes (CWDEs) secreted by these pathogens are crucial for penetrating the cell wall and accessing nutrients. Among them, Diaporthe species are recognized as major causal agents of soft rot in kiwifruit, yet their pathogenic mechanisms are not well understood. In this study, we explored the production of various CWDEs secreted by Diaporthe Z1-1N, including polygalacturonase (PG), polymethylgalacturonase (PMG), polygalacturonic acid transeliminase (PGTE), pectin methyltranseliminase (PMTE), endoglucanase (Cx), and β-glucosidase (β-glu), both in liquid cultures and within infected kiwifruit tissues. Our findings revealed significant activities of two pectinases (PG and PMG) and cellulases (Cx and β-glu) in the infected tissues. In contrast, very low levels of PMTE and PGTE activities were observed under the same conditions. When orange pectin served as the carbon source, PG and PMG showed notable activities, while PMTE and PGTE remained inactive. Moreover, the activities of Cx and β-glu significantly decreased by more than 63 times in the liquid medium with carboxymethyl cellulose (CMC) as the carbon source compared to their levels in infected kiwifruit. A further analysis indicated that the necrotic lesions produced by pectinase extracts were larger than those produced by cellulase extracts. Notably, four enzymes-PG, PMG, Cx, and β-glu-exhibited high activities on the third or fourth day post-infection with Diaporthe Z1-1N. These results suggest that Diaporthe Z1-1N secretes a range of CWDEs that contribute to kiwifruit decay by enhancing the activities of PG, PMG, Cx, and β-glu. This study sheds light on the pathogenicity of Diaporthe in kiwifruit and highlights the importance of these enzymes in the decay process.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信