Brain-Periphery Axes: The Potential Role of Extracellular Vesicles-Delivered miRNAs.

IF 3.6 3区 生物学 Q1 BIOLOGY
Giuseppa D'Amico, Adelaide Carista, Olga Maria Manna, Letizia Paladino, Domiziana Picone, Silvia Sarullo, Martina Sausa, Francesco Cappello, Alessandra Maria Vitale, Celeste Caruso Bavisotto
{"title":"Brain-Periphery Axes: The Potential Role of Extracellular Vesicles-Delivered miRNAs.","authors":"Giuseppa D'Amico, Adelaide Carista, Olga Maria Manna, Letizia Paladino, Domiziana Picone, Silvia Sarullo, Martina Sausa, Francesco Cappello, Alessandra Maria Vitale, Celeste Caruso Bavisotto","doi":"10.3390/biology13121056","DOIUrl":null,"url":null,"abstract":"<p><p>Bidirectional communication between the central nervous system (CNS) and peripheral organs and tissue has been widely documented in physiological and pathological conditions. This communication relies on the bilateral transmission of signaling molecules and substances that circulate throughout the body and reach their target site(s) via the blood and other biological fluids (e.g., the cerebrospinal fluid, the lymph). One of the mechanisms by which these molecular messengers are exchanged is through the secretion of extracellular vesicles (EVs). EVs are known to mediate cell-to-cell communication by delivering biological molecules, including nucleic acids, proteins, lipids, and various other bioactive regulators. Moreover, EVs can cross the blood-brain barrier (BBB), enabling direct communication between the periphery and the brain. In particular, the delivery of microRNAs (miRNAs) can modulate the expression profiles of recipient cells, thereby influencing their functions. This review synthesizes current findings about the brain-periphery cross-talk mediated by EVs-delivered miRNAs. Although this mechanism has been definitively shown in a few cases, much evidence indirectly indicates that it could mediate brain-peripherical organs/tissue communication, especially in pathological conditions. Therefore, understanding this process could provide valuable insights for the treatment and management of neurological and systemic diseases.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"13 12","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673379/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology13121056","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bidirectional communication between the central nervous system (CNS) and peripheral organs and tissue has been widely documented in physiological and pathological conditions. This communication relies on the bilateral transmission of signaling molecules and substances that circulate throughout the body and reach their target site(s) via the blood and other biological fluids (e.g., the cerebrospinal fluid, the lymph). One of the mechanisms by which these molecular messengers are exchanged is through the secretion of extracellular vesicles (EVs). EVs are known to mediate cell-to-cell communication by delivering biological molecules, including nucleic acids, proteins, lipids, and various other bioactive regulators. Moreover, EVs can cross the blood-brain barrier (BBB), enabling direct communication between the periphery and the brain. In particular, the delivery of microRNAs (miRNAs) can modulate the expression profiles of recipient cells, thereby influencing their functions. This review synthesizes current findings about the brain-periphery cross-talk mediated by EVs-delivered miRNAs. Although this mechanism has been definitively shown in a few cases, much evidence indirectly indicates that it could mediate brain-peripherical organs/tissue communication, especially in pathological conditions. Therefore, understanding this process could provide valuable insights for the treatment and management of neurological and systemic diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信