Novel Eel Skin Fibroblast Cell Line: Bridging Adherent and Suspension Growth for Aquatic Applications Including Virus Susceptibility.

IF 3.6 3区 生物学 Q1 BIOLOGY
Zaiyu Zheng, Bin Chen, Xiaodong Liu, Rui Guo, Hongshu Chi, Xiuxia Chen, Ying Pan, Hui Gong
{"title":"Novel Eel Skin Fibroblast Cell Line: Bridging Adherent and Suspension Growth for Aquatic Applications Including Virus Susceptibility.","authors":"Zaiyu Zheng, Bin Chen, Xiaodong Liu, Rui Guo, Hongshu Chi, Xiuxia Chen, Ying Pan, Hui Gong","doi":"10.3390/biology13121068","DOIUrl":null,"url":null,"abstract":"<p><p>Suspension growth can greatly increase the cell density and yield of cell metabolites. To meet the requirements of aquatic industries, a culture model derived from <i>Anguilla anguilla</i> skin was developed using the explant outgrowth and enzyme-digesting passaging methods. These cells were kept in vitro continuously for over 12 months and subcultured 68 times. This heteroploid cell line, designated as ES, can naturally adapt to adherent and suspension growth reversibly under certain temperatures, serum percentages, and inoculum densities, without the need for any microcarriers or special medium additives. The ES cells can continue being highly productive under a temperature range of 15-37 °C and a serum percentage ranging from 3 to 15%. An inoculum density higher than 5 × 10<sup>5</sup> cells·mL<sup>-1</sup> is necessary for the ES cells to turn into suspension efficiently. The green fluorescent protein (GFP) reporter gene was successfully expressed in the ES cells. The ES cells demonstrated susceptibility to Anguillid herpesvirus (AngHV) and red-spotted grouper nervous necrosis virus (RGNNV). ES is the first natural suspension growth model of aquatic origin; it does not require the processes of suspension domestication and carrier dissolution, making it a promising and cost-effective model for vaccine production, bio-pharmaceutical manufacturing, and cellular agriculture.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"13 12","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673813/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology13121068","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Suspension growth can greatly increase the cell density and yield of cell metabolites. To meet the requirements of aquatic industries, a culture model derived from Anguilla anguilla skin was developed using the explant outgrowth and enzyme-digesting passaging methods. These cells were kept in vitro continuously for over 12 months and subcultured 68 times. This heteroploid cell line, designated as ES, can naturally adapt to adherent and suspension growth reversibly under certain temperatures, serum percentages, and inoculum densities, without the need for any microcarriers or special medium additives. The ES cells can continue being highly productive under a temperature range of 15-37 °C and a serum percentage ranging from 3 to 15%. An inoculum density higher than 5 × 105 cells·mL-1 is necessary for the ES cells to turn into suspension efficiently. The green fluorescent protein (GFP) reporter gene was successfully expressed in the ES cells. The ES cells demonstrated susceptibility to Anguillid herpesvirus (AngHV) and red-spotted grouper nervous necrosis virus (RGNNV). ES is the first natural suspension growth model of aquatic origin; it does not require the processes of suspension domestication and carrier dissolution, making it a promising and cost-effective model for vaccine production, bio-pharmaceutical manufacturing, and cellular agriculture.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信