Predicting the risk of type 2 diabetes mellitus (T2DM) emergence in 5 years using mammography images: a comparison study between radiomics and deep learning algorithm.
IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
{"title":"Predicting the risk of type 2 diabetes mellitus (T2DM) emergence in 5 years using mammography images: a comparison study between radiomics and deep learning algorithm.","authors":"Nishta Letchumanan, Shouhei Hanaoka, Tomomi Takenaga, Yusuke Suzuki, Takahiro Nakao, Yukihiro Nomura, Takeharu Yoshikawa, Osamu Abe","doi":"10.1117/1.JMI.12.1.014501","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The prevalence of type 2 diabetes mellitus (T2DM) has been steadily increasing over the years. We aim to predict the occurrence of T2DM using mammography images within 5 years using two different methods and compare their performance.</p><p><strong>Approach: </strong>We examined 312 samples, including 110 positive cases (developed T2DM after 5 years) and 202 negative cases (did not develop T2DM) using two different methods. In the first method, a radiomics-based approach, we utilized radiomics features and machine learning (ML) algorithms. The entire breast region was chosen as the region of interest for extracting radiomics features. Then, a binary breast image was created from which we extracted 668 features and analyzed them using various ML algorithms. In the second method, a complex convolutional neural network (CNN) with a modified ResNet architecture and various kernel sizes was applied to raw mammography images for the prediction task. A nested, stratified five-fold cross-validation was done for both parts A and B to compute accuracy, sensitivity, specificity, and area under the receiver operating curve (AUROC). Hyperparameter tuning was also done to enhance the model's performance and reliability.</p><p><strong>Results: </strong>The radiomics approach's light gradient boosting model gave 68.9% accuracy, 30.7% sensitivity, 89.5% specificity, and 0.63 AUROC. The CNN method achieved an AUROC of 0.58 over 20 epochs.</p><p><strong>Conclusion: </strong>Radiomics outperformed CNN by 0.05 in terms of AUROC. This may be due to the more straightforward interpretability and clinical relevance of predefined radiomics features compared with the complex, abstract features learned by CNNs.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 1","pages":"014501"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702674/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.1.014501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The prevalence of type 2 diabetes mellitus (T2DM) has been steadily increasing over the years. We aim to predict the occurrence of T2DM using mammography images within 5 years using two different methods and compare their performance.
Approach: We examined 312 samples, including 110 positive cases (developed T2DM after 5 years) and 202 negative cases (did not develop T2DM) using two different methods. In the first method, a radiomics-based approach, we utilized radiomics features and machine learning (ML) algorithms. The entire breast region was chosen as the region of interest for extracting radiomics features. Then, a binary breast image was created from which we extracted 668 features and analyzed them using various ML algorithms. In the second method, a complex convolutional neural network (CNN) with a modified ResNet architecture and various kernel sizes was applied to raw mammography images for the prediction task. A nested, stratified five-fold cross-validation was done for both parts A and B to compute accuracy, sensitivity, specificity, and area under the receiver operating curve (AUROC). Hyperparameter tuning was also done to enhance the model's performance and reliability.
Results: The radiomics approach's light gradient boosting model gave 68.9% accuracy, 30.7% sensitivity, 89.5% specificity, and 0.63 AUROC. The CNN method achieved an AUROC of 0.58 over 20 epochs.
Conclusion: Radiomics outperformed CNN by 0.05 in terms of AUROC. This may be due to the more straightforward interpretability and clinical relevance of predefined radiomics features compared with the complex, abstract features learned by CNNs.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.