Best holdout assessment is sufficient for cancer transcriptomic model selection.

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Patterns Pub Date : 2024-12-06 eCollection Date: 2024-12-13 DOI:10.1016/j.patter.2024.101115
Jake Crawford, Maria Chikina, Casey S Greene
{"title":"Best holdout assessment is sufficient for cancer transcriptomic model selection.","authors":"Jake Crawford, Maria Chikina, Casey S Greene","doi":"10.1016/j.patter.2024.101115","DOIUrl":null,"url":null,"abstract":"<p><p>Guidelines in statistical modeling for genomics hold that simpler models have advantages over more complex ones. Potential advantages include cost, interpretability, and improved generalization across datasets or biological contexts. We directly tested the assumption that small gene signatures generalize better by examining the generalization of mutation status prediction models across datasets (from cell lines to human tumors and vice versa) and biological contexts (holding out entire cancer types from pan-cancer data). We compared model selection between solely cross-validation performance and combining cross-validation performance with regularization strength. We did not observe that more regularized signatures generalized better. This result held across both generalization problems and for both linear models (LASSO logistic regression) and non-linear ones (neural networks). When the goal of an analysis is to produce generalizable predictive models, we recommend choosing the ones that perform best on held-out data or in cross-validation instead of those that are smaller or more regularized.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"5 12","pages":"101115"},"PeriodicalIF":6.7000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11701843/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Guidelines in statistical modeling for genomics hold that simpler models have advantages over more complex ones. Potential advantages include cost, interpretability, and improved generalization across datasets or biological contexts. We directly tested the assumption that small gene signatures generalize better by examining the generalization of mutation status prediction models across datasets (from cell lines to human tumors and vice versa) and biological contexts (holding out entire cancer types from pan-cancer data). We compared model selection between solely cross-validation performance and combining cross-validation performance with regularization strength. We did not observe that more regularized signatures generalized better. This result held across both generalization problems and for both linear models (LASSO logistic regression) and non-linear ones (neural networks). When the goal of an analysis is to produce generalizable predictive models, we recommend choosing the ones that perform best on held-out data or in cross-validation instead of those that are smaller or more regularized.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信