Progress on ancient DNA investigation of Late Quaternary mammals in China.

Q3 Medicine
遗传 Pub Date : 2025-01-01 DOI:10.16288/j.yczz.24-193
Gui-Lian Sheng, Ming-Min Zheng, Bo Xiao, Jun-Xia Yuan
{"title":"Progress on ancient DNA investigation of Late Quaternary mammals in China.","authors":"Gui-Lian Sheng, Ming-Min Zheng, Bo Xiao, Jun-Xia Yuan","doi":"10.16288/j.yczz.24-193","DOIUrl":null,"url":null,"abstract":"<p><p>It has been more than 40 years since the beginning of exploring the genetic composition of ancient organisms from the perspective of ancient DNA. In the recent 20 years, with the development and application of high-throughput sequencing technology platforms and the improved efficiency of retrieving highly fragmented DNA molecules, ancient DNA research moved forward to a brand-new era of deep-time paleogenomics. It not only solved many controversial phylogenetic problems, enriched the migration and evolution details of various organisms including humans, but also launched exploration of the molecular responses to climate changes in terms of \"whole genomic-big data-multi-species\" level. Moreover, it expanded the sample age from no more than 100,000 years to the Early Pleistocene, ~2 million years ago. Recently, Chinese scientists have made many influential breakthroughs in evolution and migration integration of East Asian populations and thus filled an important gap in the evolutionary process of modern human. Compared to the situation in human paleogenomic studies, less attention has been paid to the study of ancient DNA from vertebrates remains. In this review, we introduce a series of advances in ancient DNA investigations of large mammals in Late Quaternary in China, summarize the research breakthroughs in revealing the systematic evolutionary relationship between ancient and extant groups, gene flow, and molecular responses of mammalian populations to climate change, and explore the opportunities and key challenges in the field of mammalian paleogenomics.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 1","pages":"46-57"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.24-193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

It has been more than 40 years since the beginning of exploring the genetic composition of ancient organisms from the perspective of ancient DNA. In the recent 20 years, with the development and application of high-throughput sequencing technology platforms and the improved efficiency of retrieving highly fragmented DNA molecules, ancient DNA research moved forward to a brand-new era of deep-time paleogenomics. It not only solved many controversial phylogenetic problems, enriched the migration and evolution details of various organisms including humans, but also launched exploration of the molecular responses to climate changes in terms of "whole genomic-big data-multi-species" level. Moreover, it expanded the sample age from no more than 100,000 years to the Early Pleistocene, ~2 million years ago. Recently, Chinese scientists have made many influential breakthroughs in evolution and migration integration of East Asian populations and thus filled an important gap in the evolutionary process of modern human. Compared to the situation in human paleogenomic studies, less attention has been paid to the study of ancient DNA from vertebrates remains. In this review, we introduce a series of advances in ancient DNA investigations of large mammals in Late Quaternary in China, summarize the research breakthroughs in revealing the systematic evolutionary relationship between ancient and extant groups, gene flow, and molecular responses of mammalian populations to climate change, and explore the opportunities and key challenges in the field of mammalian paleogenomics.

中国晚第四纪哺乳动物古DNA研究进展。
从古代DNA的角度探索古代生物的遗传组成,至今已有40多年的历史。近20年来,随着高通量测序技术平台的发展和应用,以及高片段化DNA分子检索效率的提高,古DNA研究进入了一个全新的深时间古基因组学时代。它不仅解决了许多有争议的系统发育问题,丰富了包括人类在内的各种生物的迁移和进化细节,而且开启了在“全基因组-大数据-多物种”水平上对气候变化的分子响应的探索。此外,它将样本年龄从不超过10万年扩大到早更新世,约200万年前。近年来,中国科学家在东亚人群的进化和迁移整合方面取得了许多有影响的突破,填补了现代人类进化过程中的一个重要空白。与人类古基因组学研究相比,对古脊椎动物遗骸DNA的研究受到的关注较少。本文综述了中国晚第四纪大型哺乳动物古DNA研究的一系列进展,总结了在揭示古今类群系统进化关系、基因流和哺乳动物种群对气候变化的分子响应等方面的研究突破,并探讨了哺乳动物古基因组学研究的机遇和面临的关键挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
遗传
遗传 Medicine-Medicine (all)
CiteScore
2.50
自引率
0.00%
发文量
6699
期刊介绍: Hereditas is a national academic journal sponsored by the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences and the Chinese Society of Genetics and published by Science Press. It is a Chinese core journal and a Chinese high-quality scientific journal. The journal mainly publishes innovative research papers in the fields of genetics, genomics, cell biology, developmental biology, biological evolution, genetic engineering and biotechnology; new technologies and new methods; monographs and reviews on hot issues in the discipline; academic debates and discussions; experience in genetics teaching; introductions to famous geneticists at home and abroad; genetic counseling; information on academic conferences at home and abroad, etc. Main columns: review, frontier focus, research report, technology and method, resources and platform, experimental operation guide, genetic resources, genetics teaching, scientific news, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信