Chen Wang, Taswar Ahsan, Ao Ding, Di Han, Jie Gao, Chun-Hao Liang, Si-Tong Du, Yi Wei, Yu-Qian Huang, Shi-Hong Zhang
{"title":"Colonization of Serendipita indica enhances resistance against Phoma arachidicola in Arachis hypogaea L.","authors":"Chen Wang, Taswar Ahsan, Ao Ding, Di Han, Jie Gao, Chun-Hao Liang, Si-Tong Du, Yi Wei, Yu-Qian Huang, Shi-Hong Zhang","doi":"10.1007/s11274-024-04244-z","DOIUrl":null,"url":null,"abstract":"<p><p>The endophytic fungus Serendipita indica (Si) could suppress Phoma arachidicola (Pa) and control peanut web blotch disease. The study evaluated its growth-promoting and disease-resistant effects in two peanut cultivars, Luhua11 and Baisha1016. In vitro experiments and microscopy analysis demonstrated that S. indica suppressed the growth of P. arachidicola. Additionally, scanning electron microscopy illustrated that S. indica adversely affected the pathogen's hyphae. LSi treatment showed the highest stem height (35 cm), root length (15.533 cm), shoot fresh weight (9.33 g), shoot dry weight (1.30085 g), root dry weight (0.1990 g), and chlorophyll a (1.3253) and b (1.8316), while BPa had the lowest values of these parameters. The highest MDA value was observed at 96 h for BPa with (3.14598 nmol/g), and the highest proline value was observed at 72 h for LSi-Pa with (56.42851 µmol/g). Antioxidant enzymes, catalase, peroxidase, ascorbate peroxidase, and phenylalanine ammonia-lyase, increased significantly after 48 h in cultivar L. The most significant result is observed in salicylic acid with LSi-Pa at 72 h (702.10 µg/mL), showing a consistent significant difference. RNA-seq analysis revealed more pronounced transcriptomic changes in cultivar L, with enriched pathways related to flavonoid biosynthesis and defense responses. The LSi-Pa treatment significantly upregulated gene expression at 96 h, with AhNPR1 (0.05807), AhNPR10 (0.10536), AhPAL1 (4.30831), and Ahcapx (0.22074), demonstrating a strong regulatory effect. These results demonstrate that S. indica enhances peanut plant growth and resilience against P. arachidicola, mainly through modulation of oxidative stress and immune responses.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 2","pages":"28"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04244-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The endophytic fungus Serendipita indica (Si) could suppress Phoma arachidicola (Pa) and control peanut web blotch disease. The study evaluated its growth-promoting and disease-resistant effects in two peanut cultivars, Luhua11 and Baisha1016. In vitro experiments and microscopy analysis demonstrated that S. indica suppressed the growth of P. arachidicola. Additionally, scanning electron microscopy illustrated that S. indica adversely affected the pathogen's hyphae. LSi treatment showed the highest stem height (35 cm), root length (15.533 cm), shoot fresh weight (9.33 g), shoot dry weight (1.30085 g), root dry weight (0.1990 g), and chlorophyll a (1.3253) and b (1.8316), while BPa had the lowest values of these parameters. The highest MDA value was observed at 96 h for BPa with (3.14598 nmol/g), and the highest proline value was observed at 72 h for LSi-Pa with (56.42851 µmol/g). Antioxidant enzymes, catalase, peroxidase, ascorbate peroxidase, and phenylalanine ammonia-lyase, increased significantly after 48 h in cultivar L. The most significant result is observed in salicylic acid with LSi-Pa at 72 h (702.10 µg/mL), showing a consistent significant difference. RNA-seq analysis revealed more pronounced transcriptomic changes in cultivar L, with enriched pathways related to flavonoid biosynthesis and defense responses. The LSi-Pa treatment significantly upregulated gene expression at 96 h, with AhNPR1 (0.05807), AhNPR10 (0.10536), AhPAL1 (4.30831), and Ahcapx (0.22074), demonstrating a strong regulatory effect. These results demonstrate that S. indica enhances peanut plant growth and resilience against P. arachidicola, mainly through modulation of oxidative stress and immune responses.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.