Federico Corti, Filippo Locri, Flavia Plastino, Paola Perrotta, Krisztina Zsebo, Emma Ristori, Xiangyun Yin, Eric Song, Helder André, Michael Simons
{"title":"Anti-Syndecan 2 Antibody Treatment Reduces Edema Formation and Inflammation of Murine Laser-Induced CNV.","authors":"Federico Corti, Filippo Locri, Flavia Plastino, Paola Perrotta, Krisztina Zsebo, Emma Ristori, Xiangyun Yin, Eric Song, Helder André, Michael Simons","doi":"10.1167/tvst.14.1.10","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Alteration of visual acuity in wet age-related macular degeneration (AMD) is mostly driven by vascular endothelial growth factor A (VEGF-A)-induced edema from leaky newly forming blood vessels below the retina layers. To date, all therapies aimed at alleviation of this process have relied on inhibition of VEGF-A activity. Although effective in preventing vascular leak and edema, this approach also leads to the loss of normal vasculature and multiple related side effects.</p><p><strong>Methods: </strong>We have developed an alternative strategy that uses anti-syndecan-2 polyclonal antibody (anti-Sdc2 pAb) to block VEGF-A-induced permeability without interfering with other VEGF-A activities. The effect of anti-Sdc2 pAb therapy was assessed in vitro using a transendothelial electrical resistance (TEER) assay, as well as staining of the endothelial cell junction, and in vivo in the laser-induced choroidal neovascularization (CNV) model.</p><p><strong>Results: </strong>Anti-Sdc2 pAb blocked VEGF-A-induced permeability in vitro, and both local intravitreal injections and systemic intravenous treatments with anti-Sdc2 pAb were as effective as intravitreal anti-VEGF therapy in reducing edema, size of retinal lesions, and local inflammation in this model. Post-injury neovascularization was not affected by treatment with anti-Sdc2 pAb.</p><p><strong>Conclusions: </strong>These findings indicate that anti-Sdc2 pAb therapy can be an effective alternative to anti-VEGF-A approaches for suppression of edema and to prevent retinal lesions in wet neovascular AMD (nAMD).</p><p><strong>Translational relevance: </strong>Intravitreal anti-Sdc2 treatment may avoid side effects observed with the long-term anti-VEGF therapy, and systemic treatment with an anti-Sdc2 pAb antibody can address the issues associated with repeated intravitreal injections.</p>","PeriodicalId":23322,"journal":{"name":"Translational Vision Science & Technology","volume":"14 1","pages":"10"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730891/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Vision Science & Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/tvst.14.1.10","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Alteration of visual acuity in wet age-related macular degeneration (AMD) is mostly driven by vascular endothelial growth factor A (VEGF-A)-induced edema from leaky newly forming blood vessels below the retina layers. To date, all therapies aimed at alleviation of this process have relied on inhibition of VEGF-A activity. Although effective in preventing vascular leak and edema, this approach also leads to the loss of normal vasculature and multiple related side effects.
Methods: We have developed an alternative strategy that uses anti-syndecan-2 polyclonal antibody (anti-Sdc2 pAb) to block VEGF-A-induced permeability without interfering with other VEGF-A activities. The effect of anti-Sdc2 pAb therapy was assessed in vitro using a transendothelial electrical resistance (TEER) assay, as well as staining of the endothelial cell junction, and in vivo in the laser-induced choroidal neovascularization (CNV) model.
Results: Anti-Sdc2 pAb blocked VEGF-A-induced permeability in vitro, and both local intravitreal injections and systemic intravenous treatments with anti-Sdc2 pAb were as effective as intravitreal anti-VEGF therapy in reducing edema, size of retinal lesions, and local inflammation in this model. Post-injury neovascularization was not affected by treatment with anti-Sdc2 pAb.
Conclusions: These findings indicate that anti-Sdc2 pAb therapy can be an effective alternative to anti-VEGF-A approaches for suppression of edema and to prevent retinal lesions in wet neovascular AMD (nAMD).
Translational relevance: Intravitreal anti-Sdc2 treatment may avoid side effects observed with the long-term anti-VEGF therapy, and systemic treatment with an anti-Sdc2 pAb antibody can address the issues associated with repeated intravitreal injections.
期刊介绍:
Translational Vision Science & Technology (TVST), an official journal of the Association for Research in Vision and Ophthalmology (ARVO), an international organization whose purpose is to advance research worldwide into understanding the visual system and preventing, treating and curing its disorders, is an online, open access, peer-reviewed journal emphasizing multidisciplinary research that bridges the gap between basic research and clinical care. A highly qualified and diverse group of Associate Editors and Editorial Board Members is led by Editor-in-Chief Marco Zarbin, MD, PhD, FARVO.
The journal covers a broad spectrum of work, including but not limited to:
Applications of stem cell technology for regenerative medicine,
Development of new animal models of human diseases,
Tissue bioengineering,
Chemical engineering to improve virus-based gene delivery,
Nanotechnology for drug delivery,
Design and synthesis of artificial extracellular matrices,
Development of a true microsurgical operating environment,
Refining data analysis algorithms to improve in vivo imaging technology,
Results of Phase 1 clinical trials,
Reverse translational ("bedside to bench") research.
TVST seeks manuscripts from scientists and clinicians with diverse backgrounds ranging from basic chemistry to ophthalmic surgery that will advance or change the way we understand and/or treat vision-threatening diseases. TVST encourages the use of color, multimedia, hyperlinks, program code and other digital enhancements.