Analysis and optimization of the adsorption of lead ions on a new material based on silica synthesized from blast furnace slag.

IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Turkish Journal of Chemistry Pub Date : 2024-11-18 eCollection Date: 2024-01-01 DOI:10.55730/1300-0527.3705
Toufik Chouchane, Ouahida Khireddine, Sabiha Chouchane, Mohamed Tayeb Abedghars, Hazem Meradi
{"title":"Analysis and optimization of the adsorption of lead ions on a new material based on silica synthesized from blast furnace slag.","authors":"Toufik Chouchane, Ouahida Khireddine, Sabiha Chouchane, Mohamed Tayeb Abedghars, Hazem Meradi","doi":"10.55730/1300-0527.3705","DOIUrl":null,"url":null,"abstract":"<p><p>A novel silica-based material (SBM), synthesized from chemically-, thermally-, and mechanically-treated blast furnace slag (TBFS), was examined for its batch-mode lead adsorption capacity based on various parameters. Physicochemical examinations revealed that the formulation of the new SBM consisted mainly of silica, which represented 81.79% of its total composition. After modification, the measured specific surface area changed significantly, from 275.8 to 480.13 m<sup>2</sup>/g, with a point of zero charge (PZC) of approximately 3.4 on the pH scale. The experiment revealed that the driving factors (contact time, stirring speed, solution pH, temperature, and initial concentration) greatly influenced improvement of the lead adsorption capacity, which reached 164.84 mg/g after 40 min of interaction. The adsorption isotherms demonstrated that the lead adsorption took place on a homogeneous surface and in a single layer, which was confirmed by the correlation coefficient and the ability of the Langmuir model to adsorb. The separation factor (R<sub>L</sub>) and heterogeneity factor (1/n) demonstrated that adsorption was favorable, while the Temkin parameter (b<sub>t</sub>) revealed that removal occurred through physical adsorption. According to the kinetic analysis, this process followed a pseudo-second-order kinetic model and was regulated by both external diffusion and intraparticle diffusion. Thermodynamic parameters demonstrated that lead adsorption was a spontaneous, exothermic, less entropic, and physical process, driven by electrostatic interaction. Activation energy revealed that the lead removal process occurred through physical adsorption. Desorption analysis demonstrated that SBM can be reused up to four consecutive times.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 6","pages":"867-884"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706299/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3705","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel silica-based material (SBM), synthesized from chemically-, thermally-, and mechanically-treated blast furnace slag (TBFS), was examined for its batch-mode lead adsorption capacity based on various parameters. Physicochemical examinations revealed that the formulation of the new SBM consisted mainly of silica, which represented 81.79% of its total composition. After modification, the measured specific surface area changed significantly, from 275.8 to 480.13 m2/g, with a point of zero charge (PZC) of approximately 3.4 on the pH scale. The experiment revealed that the driving factors (contact time, stirring speed, solution pH, temperature, and initial concentration) greatly influenced improvement of the lead adsorption capacity, which reached 164.84 mg/g after 40 min of interaction. The adsorption isotherms demonstrated that the lead adsorption took place on a homogeneous surface and in a single layer, which was confirmed by the correlation coefficient and the ability of the Langmuir model to adsorb. The separation factor (RL) and heterogeneity factor (1/n) demonstrated that adsorption was favorable, while the Temkin parameter (bt) revealed that removal occurred through physical adsorption. According to the kinetic analysis, this process followed a pseudo-second-order kinetic model and was regulated by both external diffusion and intraparticle diffusion. Thermodynamic parameters demonstrated that lead adsorption was a spontaneous, exothermic, less entropic, and physical process, driven by electrostatic interaction. Activation energy revealed that the lead removal process occurred through physical adsorption. Desorption analysis demonstrated that SBM can be reused up to four consecutive times.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Turkish Journal of Chemistry
Turkish Journal of Chemistry 化学-工程:化工
CiteScore
2.40
自引率
7.10%
发文量
87
审稿时长
3 months
期刊介绍: The Turkish Journal of Chemistry is a bimonthly multidisciplinary journal published by the Scientific and Technological Research Council of Turkey (TÜBİTAK). The journal is dedicated to dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, polymeric, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences especially in chemical engineering where molecular aspects are key to the findings. The journal accepts English-language original manuscripts and contribution is open to researchers of all nationalities. The journal publishes refereed original papers, reviews, letters to editor and issues devoted to special fields. All manuscripts are peer-reviewed and electronic processing ensures accurate reproduction of text and data, plus publication times as short as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信