Genetic dissection of flag leaf morphology traits and fine mapping of a novel QTL (Qflw.sxau-6BL) in bread wheat (Triticum aestivum L.).

IF 4.4 1区 农林科学 Q1 AGRONOMY
Ling Qiao, Xingwei Zheng, Jiajia Zhao, Bangbang Wu, Yuqiong Hao, Xiaohua Li, Md Mostofa Uddin Helal, Jun Zheng
{"title":"Genetic dissection of flag leaf morphology traits and fine mapping of a novel QTL (Qflw.sxau-6BL) in bread wheat (Triticum aestivum L.).","authors":"Ling Qiao, Xingwei Zheng, Jiajia Zhao, Bangbang Wu, Yuqiong Hao, Xiaohua Li, Md Mostofa Uddin Helal, Jun Zheng","doi":"10.1007/s00122-024-04802-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Total 60-QRC for FLM traits were detected by meta-genomics analysis, nine major and stable QTL identified by DH population and validated, and a novel QTL  Qflw.sxau-6BL was fine mapped. The flag leaf is an \"ideotypic\" morphological trait providing photosynthetic assimilates in wheat. Although flag leaf morphology (FLM) traits had been extensively investigated through genetic mapping, there is a desire for FLM-related loci to be validated in multi-environments and fine mapping. In order to identify the stable genomic regions for FLM traits, we conducted a meta-genomic analysis based on reports from 2008 to 2024. Experimentally, a doubled haploid (DH) population was used to assess the genetic regions associated with FLM traits in nine environments. The meta-genomic analysis extracted 60 QTL-rich clusters (QRC), 45 of which were verified in marker-trait association (MTA) study. Nine major and stable QTL were found being associated with FLM traits across three-to-seven environments including BLUP, with phenotypic variance explained (PVE) ranging from 5.05 to 34.95%. The KASP markers of the nine QTL were validated (P < 0.005) in more than three environments using a panel of diverse wheat collections from Shanxi Province in China. Two co-located major and stable QTL viz. Qflw.sxau-6B.5 and Qfla.sxau-6B.4 were found novel and contributed to increase FLW by 12.09-19.21% and FLA by 5.45-13.28%. They also demonstrated high recombination rates in LD analysis based on the resequencing of 145 wheat landmark cultivars. The fine mapping of Qflw.sxau-6BL narrowed it down to a 1.27 Mb region as a result of the combined genotypic and phenotypic analysis for secondary mapping population. Comparing to NIL-ND3338, the NIL-LF5064 showed higher FLW by 20.45-27.37%, thousand-grain weight by 1.88-2.57% and grain length by 0.47-2.30% across all environments. The expression analysis of 11 tissues revealed seven highly expressed genes within the fine map region. This study provides a genetic basis for the FLM traits for further map-based cloning of FLW genes in wheat.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 1","pages":"21"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04802-x","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: Total 60-QRC for FLM traits were detected by meta-genomics analysis, nine major and stable QTL identified by DH population and validated, and a novel QTL  Qflw.sxau-6BL was fine mapped. The flag leaf is an "ideotypic" morphological trait providing photosynthetic assimilates in wheat. Although flag leaf morphology (FLM) traits had been extensively investigated through genetic mapping, there is a desire for FLM-related loci to be validated in multi-environments and fine mapping. In order to identify the stable genomic regions for FLM traits, we conducted a meta-genomic analysis based on reports from 2008 to 2024. Experimentally, a doubled haploid (DH) population was used to assess the genetic regions associated with FLM traits in nine environments. The meta-genomic analysis extracted 60 QTL-rich clusters (QRC), 45 of which were verified in marker-trait association (MTA) study. Nine major and stable QTL were found being associated with FLM traits across three-to-seven environments including BLUP, with phenotypic variance explained (PVE) ranging from 5.05 to 34.95%. The KASP markers of the nine QTL were validated (P < 0.005) in more than three environments using a panel of diverse wheat collections from Shanxi Province in China. Two co-located major and stable QTL viz. Qflw.sxau-6B.5 and Qfla.sxau-6B.4 were found novel and contributed to increase FLW by 12.09-19.21% and FLA by 5.45-13.28%. They also demonstrated high recombination rates in LD analysis based on the resequencing of 145 wheat landmark cultivars. The fine mapping of Qflw.sxau-6BL narrowed it down to a 1.27 Mb region as a result of the combined genotypic and phenotypic analysis for secondary mapping population. Comparing to NIL-ND3338, the NIL-LF5064 showed higher FLW by 20.45-27.37%, thousand-grain weight by 1.88-2.57% and grain length by 0.47-2.30% across all environments. The expression analysis of 11 tissues revealed seven highly expressed genes within the fine map region. This study provides a genetic basis for the FLM traits for further map-based cloning of FLW genes in wheat.

面包小麦旗叶形态性状的遗传解剖及新QTL qflw . sau - 6bl的精细定位。
通过meta基因组学分析,共检测到FLM性状的60个qrc,通过DH群体鉴定并验证了9个主要且稳定的QTL,以及一个新的QTL qflow。sau - 6bl被精细绘制。旗叶是小麦的“理想型”形态性状,提供光合同化物。虽然旗叶形态(FLM)性状已经通过遗传作图进行了广泛的研究,但人们仍然希望在多环境和精细作图中验证旗叶形态相关位点。为了确定FLM性状的稳定基因组区域,我们基于2008 - 2024年的报道进行了meta基因组分析。实验中,利用双单倍体(DH)群体对9种环境中与FLM性状相关的遗传区域进行了评估。meta基因组分析共提取了60个qtl富集簇(QRC),其中45个在标记-性状关联(MTA)研究中得到验证。在包括BLUP在内的3 ~ 7个环境中,共发现9个主要且稳定的QTL与FLM性状相关,表型方差解释(PVE)在5.05 ~ 34.95%之间。对9个QTL的KASP标记进行了验证(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信