Nitu Dash, Sujata Chakravarty, Amiya Kumar Rath, Nimay Chandra Giri, Kareem M AboRas, N Gowtham
{"title":"An optimized LSTM-based deep learning model for anomaly network intrusion detection.","authors":"Nitu Dash, Sujata Chakravarty, Amiya Kumar Rath, Nimay Chandra Giri, Kareem M AboRas, N Gowtham","doi":"10.1038/s41598-025-85248-z","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing prevalence of network connections is driving a continuous surge in the requirement for network security and safeguarding against cyberattacks. This has triggered the need to develop and implement intrusion detection systems (IDS), one of the key components of network perimeter aimed at thwarting and alleviating the issues presented by network invaders. Over time, intrusion detection systems have been instrumental in identifying network breaches and deviations. Several researchers have recommended the implementation of machine learning approaches in IDSs to counteract the menace posed by network intruders. Nevertheless, most previously recommended IDSs exhibit a notable false alarm rate. To mitigate this challenge, exploring deep learning methodologies emerges as a viable solution, leveraging their demonstrated efficacy across various domains. Hence, this article proposes an optimized Long Short-Term Memory (LSTM) for identifying anomalies in network traffic. The presented model uses three optimization methods, i.e., Particle Swarm Optimization (PSO), JAYA, and Salp Swarm Algorithm (SSA), to optimize the hyperparameters of LSTM. In this study, NSL KDD, CICIDS, and BoT-IoT datasets are taken into consideration. To evaluate the efficacy of the proposed model, several indicators of performance like Accuracy, Precision, Recall, F-score, True Positive Rate (TPR), False Positive Rate (FPR), and Receiver Operating Characteristic curve (ROC) have been chosen. A comparative analysis of PSO-LSTMIDS, JAYA-LSTMIDS, and SSA-LSTMIDS is conducted. The simulation results demonstrate that SSA-LSTMIDS surpasses all the models examined in this study across all three datasets.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"1554"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718078/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-85248-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing prevalence of network connections is driving a continuous surge in the requirement for network security and safeguarding against cyberattacks. This has triggered the need to develop and implement intrusion detection systems (IDS), one of the key components of network perimeter aimed at thwarting and alleviating the issues presented by network invaders. Over time, intrusion detection systems have been instrumental in identifying network breaches and deviations. Several researchers have recommended the implementation of machine learning approaches in IDSs to counteract the menace posed by network intruders. Nevertheless, most previously recommended IDSs exhibit a notable false alarm rate. To mitigate this challenge, exploring deep learning methodologies emerges as a viable solution, leveraging their demonstrated efficacy across various domains. Hence, this article proposes an optimized Long Short-Term Memory (LSTM) for identifying anomalies in network traffic. The presented model uses three optimization methods, i.e., Particle Swarm Optimization (PSO), JAYA, and Salp Swarm Algorithm (SSA), to optimize the hyperparameters of LSTM. In this study, NSL KDD, CICIDS, and BoT-IoT datasets are taken into consideration. To evaluate the efficacy of the proposed model, several indicators of performance like Accuracy, Precision, Recall, F-score, True Positive Rate (TPR), False Positive Rate (FPR), and Receiver Operating Characteristic curve (ROC) have been chosen. A comparative analysis of PSO-LSTMIDS, JAYA-LSTMIDS, and SSA-LSTMIDS is conducted. The simulation results demonstrate that SSA-LSTMIDS surpasses all the models examined in this study across all three datasets.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.