{"title":"Blocking the isoflavone chemoreceptor in Phytophthora sojae to prevent disease","authors":"Peiyun Ji, Yazhou Bao, Hao Zhou, Yong Pei, Wen Song, Kangmiao Ou, Zijin Qiao, Jierui Si, Zengtao Zhong, Xia Xu, Tao Huang, Danyu Shen, Zhiyuan Yin, Daolong Dou","doi":"10.1126/sciadv.adt0925","DOIUrl":null,"url":null,"abstract":"<div >Inhibiting pathogen chemotaxis is a promising strategy for reducing disease pressure. However, this strategy is currently in the proof-of-concept stage. Here, <i>Phytophthora sojae</i> was used as a model, as its biflagellated zoospores could sense genistein, a soybean root exudate, to navigate host and initiate infection. We identify <i>P. sojae</i> IRK1 (isoflavone-insensitive receptor kinase 1) as a receptor for genistein, with PsIRK2 functioning as a coreceptor that enhances the binding affinity of PsIRK1 to genistein and regulates chemotaxis by phosphorylating G protein α subunit. Last, we identify an antagonist, esculetin, which disrupts the PsIRK1-genistein interaction, thereby preventing <i>P. sojae</i> infection by repelling zoospores. Our findings reveal the mechanism by which <i>P. sojae</i> senses host genistein and demonstrate a strategy for disease prevention by targeting the chemoreceptor.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 2","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708900/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt0925","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Inhibiting pathogen chemotaxis is a promising strategy for reducing disease pressure. However, this strategy is currently in the proof-of-concept stage. Here, Phytophthora sojae was used as a model, as its biflagellated zoospores could sense genistein, a soybean root exudate, to navigate host and initiate infection. We identify P. sojae IRK1 (isoflavone-insensitive receptor kinase 1) as a receptor for genistein, with PsIRK2 functioning as a coreceptor that enhances the binding affinity of PsIRK1 to genistein and regulates chemotaxis by phosphorylating G protein α subunit. Last, we identify an antagonist, esculetin, which disrupts the PsIRK1-genistein interaction, thereby preventing P. sojae infection by repelling zoospores. Our findings reveal the mechanism by which P. sojae senses host genistein and demonstrate a strategy for disease prevention by targeting the chemoreceptor.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.