{"title":"Modeling hydrogen-assisted fatigue crack growth in low-carbon steel focusing on thermally activated hydrogen-dislocation interaction.","authors":"Osamu Takakuwa, Yuhei Ogawa","doi":"10.1080/14686996.2024.2436345","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen-assisted (HA) fatigue crack growth (FCG) occurs in ferritic steels, wherein H-dislocation interaction plays a vital role. We aim to model the HAFCG mechanism based on the <i>obstruction of dislocations</i> within the crack tip zone. Our modeling framework is as follows: H is condensed into crack tip and trapped by dislocations; these H significantly decrease dislocation mobility; stress relief via crack blunting is suppressed; localized brittle fracture triggers HAFCG. This model was substantiated experimentally in H<sub>2</sub> gas at various load frequencies and temperatures. Theoretical formulations were established considering the thermal equilibrium of H-trapping and dislocation breakaway from the H atmosphere.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2436345"},"PeriodicalIF":7.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703130/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2436345","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen-assisted (HA) fatigue crack growth (FCG) occurs in ferritic steels, wherein H-dislocation interaction plays a vital role. We aim to model the HAFCG mechanism based on the obstruction of dislocations within the crack tip zone. Our modeling framework is as follows: H is condensed into crack tip and trapped by dislocations; these H significantly decrease dislocation mobility; stress relief via crack blunting is suppressed; localized brittle fracture triggers HAFCG. This model was substantiated experimentally in H2 gas at various load frequencies and temperatures. Theoretical formulations were established considering the thermal equilibrium of H-trapping and dislocation breakaway from the H atmosphere.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.