Effect of the surface morphology of alkaline-earth metal oxides on the oxidative coupling of methane.

IF 7.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Science and Technology of Advanced Materials Pub Date : 2024-12-20 eCollection Date: 2025-01-01 DOI:10.1080/14686996.2024.2435801
Nobutsugu Hamamoto, Takakazu Kawahara, Ryoto Hagiwara, Kohei Matsuo, Kodai Matsukawa, Yoyo Hinuma, Takashi Toyao, Ken-Ichi Shimizu, Takashi Kamachi
{"title":"Effect of the surface morphology of alkaline-earth metal oxides on the oxidative coupling of methane.","authors":"Nobutsugu Hamamoto, Takakazu Kawahara, Ryoto Hagiwara, Kohei Matsuo, Kodai Matsukawa, Yoyo Hinuma, Takashi Toyao, Ken-Ichi Shimizu, Takashi Kamachi","doi":"10.1080/14686996.2024.2435801","DOIUrl":null,"url":null,"abstract":"<p><p>Alkaline-earth metal oxides with the rocksalt structure, which are simple ionic solids, have attracted attention in attempts to gain fundamental insights into the properties of metal oxides. The surfaces of alkaline-earth metal oxides are considered promising catalysts for the oxidative coupling of methane (OCM); however, the development of such catalysts remains a central research topic. In this paper, we performed first-principles calculations to investigate the ability of four alkaline-earth metal oxides (MgO, CaO, SrO, and BaO) to catalyze the OCM. We adopted five types of surfaces of rocksalt phases as research targets: the (100), (110), stepped (100), oxygen-terminated octopolar (111), and metal-terminated octopolar (111) surfaces. We found that the formation energy of surface O vacancies is a good descriptor for the adsorption energy of a H atom and a methyl radical. The energies related to the OCM mechanism show that, compared with the most stable surface, the minor surfaces better promote the C - H bond cleavage of methane. However, as the trade-off for this advantage, the minor surfaces exhibit increased affinity for the methyl radical. On the basis of this trade-off relationship between properties, we identified several surfaces that we expect to be promising OCM catalysts. Our investigation of the temperature dependence of the Gibbs free energy indicated that, at higher temperatures, the step (100) surface exhibits properties that might benefit the OCM mechanism.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2435801"},"PeriodicalIF":7.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703441/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2435801","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Alkaline-earth metal oxides with the rocksalt structure, which are simple ionic solids, have attracted attention in attempts to gain fundamental insights into the properties of metal oxides. The surfaces of alkaline-earth metal oxides are considered promising catalysts for the oxidative coupling of methane (OCM); however, the development of such catalysts remains a central research topic. In this paper, we performed first-principles calculations to investigate the ability of four alkaline-earth metal oxides (MgO, CaO, SrO, and BaO) to catalyze the OCM. We adopted five types of surfaces of rocksalt phases as research targets: the (100), (110), stepped (100), oxygen-terminated octopolar (111), and metal-terminated octopolar (111) surfaces. We found that the formation energy of surface O vacancies is a good descriptor for the adsorption energy of a H atom and a methyl radical. The energies related to the OCM mechanism show that, compared with the most stable surface, the minor surfaces better promote the C - H bond cleavage of methane. However, as the trade-off for this advantage, the minor surfaces exhibit increased affinity for the methyl radical. On the basis of this trade-off relationship between properties, we identified several surfaces that we expect to be promising OCM catalysts. Our investigation of the temperature dependence of the Gibbs free energy indicated that, at higher temperatures, the step (100) surface exhibits properties that might benefit the OCM mechanism.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信