To image or not to image: Use of imaging mass spectrometry in biomedical lipidomics.

IF 14 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Albert Maimó-Barceló, Karim Pérez-Romero, Ramón M Rodríguez, Cristina Huergo, Ibai Calvo, José A Fernández, Gwendolyn Barceló-Coblijn
{"title":"To image or not to image: Use of imaging mass spectrometry in biomedical lipidomics.","authors":"Albert Maimó-Barceló, Karim Pérez-Romero, Ramón M Rodríguez, Cristina Huergo, Ibai Calvo, José A Fernández, Gwendolyn Barceló-Coblijn","doi":"10.1016/j.plipres.2025.101319","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid imaging mass spectrometry (LIMS) allows for establishing the bidimensional distribution of lipid species within a tissue section. One of the main advantages is the generation of spatial information on lipid species distribution at a spatial (lateral) resolution bordering on single-cell resolution with no need to isolate cells. Thus, LIMS images demonstrate, with a level of detail never described before, that lipid profiles are highly sensitive to cell type and pathophysiological state. The wealth and relevance of the information conveyed by LIMS makes up for the lack of a separation stage before sample injection into the mass analyzer, which can somehow be circumvented by other means. Hence, the possibility of describing the lipidome at the cellular level while preserving the microenvironment offers an incomparable opportunity to investigate physiological and pathological contexts. However, to fully grasp the biological implications of the lipid profiles, it is essential to contextualize LIMS data within the broader multiscale 'omic' landscape, entailing genomics, epigenomics, and proteomics, each offering a unique window into the regulatory layers of the cell. In this line, the number of techniques that can be combined with LIMS to delve into the molecular mechanisms underlying differential lipid profiles is continuously increasing. Herein, we aim to describe the key features of LIMS analyses, from sample preparation to data interpretation, as well as the current methodologies to enrich and complete the final outcome. While the field is rapidly advancing, we consider there is solid evidence to foresee the incorporation of LIMS into clinical environments.</p>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"97 ","pages":"101319"},"PeriodicalIF":14.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in lipid research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.plipres.2025.101319","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipid imaging mass spectrometry (LIMS) allows for establishing the bidimensional distribution of lipid species within a tissue section. One of the main advantages is the generation of spatial information on lipid species distribution at a spatial (lateral) resolution bordering on single-cell resolution with no need to isolate cells. Thus, LIMS images demonstrate, with a level of detail never described before, that lipid profiles are highly sensitive to cell type and pathophysiological state. The wealth and relevance of the information conveyed by LIMS makes up for the lack of a separation stage before sample injection into the mass analyzer, which can somehow be circumvented by other means. Hence, the possibility of describing the lipidome at the cellular level while preserving the microenvironment offers an incomparable opportunity to investigate physiological and pathological contexts. However, to fully grasp the biological implications of the lipid profiles, it is essential to contextualize LIMS data within the broader multiscale 'omic' landscape, entailing genomics, epigenomics, and proteomics, each offering a unique window into the regulatory layers of the cell. In this line, the number of techniques that can be combined with LIMS to delve into the molecular mechanisms underlying differential lipid profiles is continuously increasing. Herein, we aim to describe the key features of LIMS analyses, from sample preparation to data interpretation, as well as the current methodologies to enrich and complete the final outcome. While the field is rapidly advancing, we consider there is solid evidence to foresee the incorporation of LIMS into clinical environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in lipid research
Progress in lipid research 生物-生化与分子生物学
CiteScore
24.50
自引率
2.20%
发文量
37
审稿时长
14.6 weeks
期刊介绍: The significance of lipids as a fundamental category of biological compounds has been widely acknowledged. The utilization of our understanding in the fields of biochemistry, chemistry, and physiology of lipids has continued to grow in biotechnology, the fats and oils industry, and medicine. Moreover, new aspects such as lipid biophysics, particularly related to membranes and lipoproteins, as well as basic research and applications of liposomes, have emerged. To keep up with these advancements, there is a need for a journal that can evaluate recent progress in specific areas and provide a historical perspective on current research. Progress in Lipid Research serves this purpose.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信