Biophysical and biochemical evidence for the role of acetate kinases (AckAs) in an acetogenic pathway in pathogenic spirochetes.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-01-09 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0312642
Ranjit K Deka, Shih-Chia Tso, Wei Z Liu, Chad A Brautigam
{"title":"Biophysical and biochemical evidence for the role of acetate kinases (AckAs) in an acetogenic pathway in pathogenic spirochetes.","authors":"Ranjit K Deka, Shih-Chia Tso, Wei Z Liu, Chad A Brautigam","doi":"10.1371/journal.pone.0312642","DOIUrl":null,"url":null,"abstract":"<p><p>Unraveling the metabolism of Treponema pallidum is a key component to understanding the pathogenesis of the human disease that it causes, syphilis. For decades, it was assumed that glucose was the sole carbon/energy source for this parasitic spirochete. But the lack of citric-acid-cycle enzymes suggested that alternative sources could be utilized, especially in microaerophilic host environments where glycolysis should not be robust. Recent bioinformatic, biophysical, and biochemical evidence supports the existence of an acetogenic energy-conservation pathway in T. pallidum and related treponemal species. In this hypothetical pathway, exogenous D-lactate can be utilized by the bacterium as an alternative energy source. Herein, we examined the final enzyme in this pathway, acetate kinase (named TP0476), which ostensibly catalyzes the generation of ATP from ADP and acetyl-phosphate. We found that TP0476 was able to carry out this reaction, but the protein was not suitable for biophysical and structural characterization. We thus performed additional studies on the homologous enzyme (75% amino-acid sequence identity) from the oral pathogen Treponema vincentii, TV0924. This protein also exhibited acetate kinase activity, and it was amenable to structural and biophysical studies. We established that the enzyme exists as a dimer in solution, and then determined its crystal structure at a resolution of 1.36 Å, showing that the protein has a similar fold to other known acetate kinases. Mutation of residues in the putative active site drastically altered its enzymatic activity. A second crystal structure of TV0924 in the presence of AMP (at 1.3 Å resolution) provided insight into the binding of one of the enzyme's substrates. On balance, this evidence strongly supported the roles of TP0476 and TV0924 as acetate kinases, reinforcing the hypothesis of an acetogenic pathway in pathogenic treponemes.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 1","pages":"e0312642"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717252/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0312642","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Unraveling the metabolism of Treponema pallidum is a key component to understanding the pathogenesis of the human disease that it causes, syphilis. For decades, it was assumed that glucose was the sole carbon/energy source for this parasitic spirochete. But the lack of citric-acid-cycle enzymes suggested that alternative sources could be utilized, especially in microaerophilic host environments where glycolysis should not be robust. Recent bioinformatic, biophysical, and biochemical evidence supports the existence of an acetogenic energy-conservation pathway in T. pallidum and related treponemal species. In this hypothetical pathway, exogenous D-lactate can be utilized by the bacterium as an alternative energy source. Herein, we examined the final enzyme in this pathway, acetate kinase (named TP0476), which ostensibly catalyzes the generation of ATP from ADP and acetyl-phosphate. We found that TP0476 was able to carry out this reaction, but the protein was not suitable for biophysical and structural characterization. We thus performed additional studies on the homologous enzyme (75% amino-acid sequence identity) from the oral pathogen Treponema vincentii, TV0924. This protein also exhibited acetate kinase activity, and it was amenable to structural and biophysical studies. We established that the enzyme exists as a dimer in solution, and then determined its crystal structure at a resolution of 1.36 Å, showing that the protein has a similar fold to other known acetate kinases. Mutation of residues in the putative active site drastically altered its enzymatic activity. A second crystal structure of TV0924 in the presence of AMP (at 1.3 Å resolution) provided insight into the binding of one of the enzyme's substrates. On balance, this evidence strongly supported the roles of TP0476 and TV0924 as acetate kinases, reinforcing the hypothesis of an acetogenic pathway in pathogenic treponemes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信