Azithromycin removal from water via adsorption on drinking water sludge-derived materials: Kinetics and isotherms studies.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-01-09 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0316487
Camilo C Castro-Jiménez, Julio C Saldarriaga-Molina, Edwin F García, Ricardo A Torres-Palma, Nancy Acelas
{"title":"Azithromycin removal from water via adsorption on drinking water sludge-derived materials: Kinetics and isotherms studies.","authors":"Camilo C Castro-Jiménez, Julio C Saldarriaga-Molina, Edwin F García, Ricardo A Torres-Palma, Nancy Acelas","doi":"10.1371/journal.pone.0316487","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we utilized drinking water treatment sludge (WTS) to produce adsorbents through the drying and calcination process. These adsorbents were then evaluated for their ability to remove azithromycin (AZT) from aqueous solutions. The L-500 adsorbent, derived from the calcination (at 500°C) of WTS generated under conditions of low turbidity in the drinking water treatment plant, presented an increase in the specific surface area from 70.745 to 95.471 m2 g-1 and in the total pore volume from 0.154 to 0.211 cm3 g-1, which resulted in a significant AZT removal efficiency of 65% in distilled water after 60 min of treatment. In synthetic wastewater, the rate of AZT removal increased to 80%, in comparison, in a real effluent of a municipal wastewater treatment plant, an AZT removal of 56% was obtained. Kinetic studies revealed that the experimental data followed the pseudo-second-order model (R2: 0.993-0.999, APE: 0.07-1.30%, and Δq: 0.10-2.14%) suggesting that chemisorption is the limiting step in the adsorption using L-500. This finding aligns with FTIR analysis, which indicates that adsorption mechanisms involve π-π stacking, hydrogen bonding, and electrostatic interactions. The equilibrium data were analyzed using the nonlinear Langmuir, Freundlich, and Langmuir-Freundlich isotherms. The Langmuir-Freundlich model presented the best fitting (R2: 0.93, APE: 2.22%, and Δq: 0.06%) revealing numerous interactions and adsorption energies between AZT and L-500. This adsorbent showed a reduction of 19% in its AZT removal after four consecutive reuse cycles. In line with the circular economy principles, our study presents an interesting prospect for the reuse and valorization of WTS. This approach not only offers an effective adsorbent for AZT removal from water but also represents a significant step forward in advancing sustainable water treatment solutions within the framework of the circular economy.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 1","pages":"e0316487"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717256/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0316487","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we utilized drinking water treatment sludge (WTS) to produce adsorbents through the drying and calcination process. These adsorbents were then evaluated for their ability to remove azithromycin (AZT) from aqueous solutions. The L-500 adsorbent, derived from the calcination (at 500°C) of WTS generated under conditions of low turbidity in the drinking water treatment plant, presented an increase in the specific surface area from 70.745 to 95.471 m2 g-1 and in the total pore volume from 0.154 to 0.211 cm3 g-1, which resulted in a significant AZT removal efficiency of 65% in distilled water after 60 min of treatment. In synthetic wastewater, the rate of AZT removal increased to 80%, in comparison, in a real effluent of a municipal wastewater treatment plant, an AZT removal of 56% was obtained. Kinetic studies revealed that the experimental data followed the pseudo-second-order model (R2: 0.993-0.999, APE: 0.07-1.30%, and Δq: 0.10-2.14%) suggesting that chemisorption is the limiting step in the adsorption using L-500. This finding aligns with FTIR analysis, which indicates that adsorption mechanisms involve π-π stacking, hydrogen bonding, and electrostatic interactions. The equilibrium data were analyzed using the nonlinear Langmuir, Freundlich, and Langmuir-Freundlich isotherms. The Langmuir-Freundlich model presented the best fitting (R2: 0.93, APE: 2.22%, and Δq: 0.06%) revealing numerous interactions and adsorption energies between AZT and L-500. This adsorbent showed a reduction of 19% in its AZT removal after four consecutive reuse cycles. In line with the circular economy principles, our study presents an interesting prospect for the reuse and valorization of WTS. This approach not only offers an effective adsorbent for AZT removal from water but also represents a significant step forward in advancing sustainable water treatment solutions within the framework of the circular economy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信