Comprehensive multi-metric analysis of user experience and performance in adaptive and non-adaptive lower-limb exoskeletons.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-01-09 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0313593
Krongkaew Supapitanon, Tanyaporn Patathong, Chaicharn Akkawutvanich, Arthicha Srisuchinnawong, Worachit Ketrungsri, Poramate Manoonpong, Patarawan Woratanarat, Chanika Angsanuntsukh
{"title":"Comprehensive multi-metric analysis of user experience and performance in adaptive and non-adaptive lower-limb exoskeletons.","authors":"Krongkaew Supapitanon, Tanyaporn Patathong, Chaicharn Akkawutvanich, Arthicha Srisuchinnawong, Worachit Ketrungsri, Poramate Manoonpong, Patarawan Woratanarat, Chanika Angsanuntsukh","doi":"10.1371/journal.pone.0313593","DOIUrl":null,"url":null,"abstract":"<p><p>Among control methods for robotic exoskeletons, biologically inspired control based on central pattern generators (CPGs) offer a promising approach to generate natural and robust walking patterns. Compared to other approaches, like model-based and machine learning-based control, the biologically inspired control provides robustness to perturbations, requires less computational power, and does not need system models or large learning datasets. While it has shown effectiveness, a comprehensive evaluation of its user experience is lacking. Thus, this study addressed this gap by investigating the performance of a state-of-the-art adaptive CPG-based exoskeleton control system (intelligent mode) under a multi-metric analysis (involving three-dimensional gait analysis, muscle activity, oxygen consumption, user comfort, and exoskeleton performance scores) and comparing it to a standard commercial exoskeleton control system (default mode). A cross-over design with randomized allocation in Thai healthy and independently walking adults ensured participants experienced both modes. All participants were assigned into two groups to receive an alternate sequence of walking with the intelligent mode or the default mode of the lower-limb exoskeleton Exo-H3 at high and normal speed. From eight participants, the intelligent mode-driven exoskeleton (adaptive exoskeleton) showed a significantly lower velocity, stride, and step lengths than the default mode-driven exoskeleton (non-adaptive exoskeleton). This setup significantly increased anterior pelvic tilt during mid-swing at normal speed (3.69 ± 1.77 degrees, p = 0.001) and high speed (2.52 ± 1.69 degrees, p = 0.004), hip flexion during stance phase with ankle dorsiflexion, and used less oxygen consumption at high speed (-2.03 ± 2.07 ml/kg/min) when compared to the default one. No significant differences of muscle activity, user comfort and exoskeleton performance scores between the two modes. Further exoskeletal modification in terms of hardware and control is still needed to improve the temporal spatial, kinematics, user comfort, and exoskeleton performance.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 1","pages":"e0313593"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717227/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0313593","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Among control methods for robotic exoskeletons, biologically inspired control based on central pattern generators (CPGs) offer a promising approach to generate natural and robust walking patterns. Compared to other approaches, like model-based and machine learning-based control, the biologically inspired control provides robustness to perturbations, requires less computational power, and does not need system models or large learning datasets. While it has shown effectiveness, a comprehensive evaluation of its user experience is lacking. Thus, this study addressed this gap by investigating the performance of a state-of-the-art adaptive CPG-based exoskeleton control system (intelligent mode) under a multi-metric analysis (involving three-dimensional gait analysis, muscle activity, oxygen consumption, user comfort, and exoskeleton performance scores) and comparing it to a standard commercial exoskeleton control system (default mode). A cross-over design with randomized allocation in Thai healthy and independently walking adults ensured participants experienced both modes. All participants were assigned into two groups to receive an alternate sequence of walking with the intelligent mode or the default mode of the lower-limb exoskeleton Exo-H3 at high and normal speed. From eight participants, the intelligent mode-driven exoskeleton (adaptive exoskeleton) showed a significantly lower velocity, stride, and step lengths than the default mode-driven exoskeleton (non-adaptive exoskeleton). This setup significantly increased anterior pelvic tilt during mid-swing at normal speed (3.69 ± 1.77 degrees, p = 0.001) and high speed (2.52 ± 1.69 degrees, p = 0.004), hip flexion during stance phase with ankle dorsiflexion, and used less oxygen consumption at high speed (-2.03 ± 2.07 ml/kg/min) when compared to the default one. No significant differences of muscle activity, user comfort and exoskeleton performance scores between the two modes. Further exoskeletal modification in terms of hardware and control is still needed to improve the temporal spatial, kinematics, user comfort, and exoskeleton performance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信