Inhibition of growth and lung metastasis of breast cancer by pH-responsive methotrexate/curcumin-loaded chitosan-stabilized nanoemulsions.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Mehrnoosh Nikpour, Zahra Karami, Samaneh Rafieenia, Arghavan Adibifar, Shaghayegh Yazdani, Fatemeh Saghatchi Zanjani, Tohid Mortezazadeh, Zahra Abdi, Kobra Rostamizadeh
{"title":"Inhibition of growth and lung metastasis of breast cancer by pH-responsive methotrexate/curcumin-loaded chitosan-stabilized nanoemulsions.","authors":"Mehrnoosh Nikpour, Zahra Karami, Samaneh Rafieenia, Arghavan Adibifar, Shaghayegh Yazdani, Fatemeh Saghatchi Zanjani, Tohid Mortezazadeh, Zahra Abdi, Kobra Rostamizadeh","doi":"10.1080/10837450.2024.2448335","DOIUrl":null,"url":null,"abstract":"<p><p>Chemotherapeutic agents are widely used to combat breast cancer. However, due to their non-selective biodistribution, their usage is associated with severe adverse effects on healthy tissues. In this study, a chitosan-stabilized nanoemulsion (CSNE) was prepared for the codelivery of curcumin (CUR) and methotrexate (MTX). The mean diameter and polydispersity index of CUR-MTX-CSNEs were 194.63 ± 6.7 nm and 0.27 ± 0.06, respectively. Modifying the nanoemulsion surface with chitosan decreased the drug release at pH 7.4 compared to pH 5.8. The MTT test demonstrated that CUR-MTX-CSNEs were more successful in reducing the cell viability of 4T1 cells than both bare formulation and free drugs. Moreover, compared to the free drug-treated group, a 2.6 times reduction of the relative tumor volume was witnessed in CUR-MTX-CSNEs-receiving mice. Histopathological studies confirmed a more substantial inhibitory effect on tumor growth and pulmonary metastasis of developed nanostructures than free CUR/MTX. While there was no noticeable toxicity in the vital organs of CUR-MTX-CSNEs-receiving mice, free drugs resulted in severe toxicity in the liver, kidney, lung and spleen. Overall, the pH-dependent drug release, improved anti-tumor activity and reduced organ toxicity suggest that CUR-MTX-CSNE may be promising in breast cancer therapy.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-12"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2448335","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemotherapeutic agents are widely used to combat breast cancer. However, due to their non-selective biodistribution, their usage is associated with severe adverse effects on healthy tissues. In this study, a chitosan-stabilized nanoemulsion (CSNE) was prepared for the codelivery of curcumin (CUR) and methotrexate (MTX). The mean diameter and polydispersity index of CUR-MTX-CSNEs were 194.63 ± 6.7 nm and 0.27 ± 0.06, respectively. Modifying the nanoemulsion surface with chitosan decreased the drug release at pH 7.4 compared to pH 5.8. The MTT test demonstrated that CUR-MTX-CSNEs were more successful in reducing the cell viability of 4T1 cells than both bare formulation and free drugs. Moreover, compared to the free drug-treated group, a 2.6 times reduction of the relative tumor volume was witnessed in CUR-MTX-CSNEs-receiving mice. Histopathological studies confirmed a more substantial inhibitory effect on tumor growth and pulmonary metastasis of developed nanostructures than free CUR/MTX. While there was no noticeable toxicity in the vital organs of CUR-MTX-CSNEs-receiving mice, free drugs resulted in severe toxicity in the liver, kidney, lung and spleen. Overall, the pH-dependent drug release, improved anti-tumor activity and reduced organ toxicity suggest that CUR-MTX-CSNE may be promising in breast cancer therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
2.90%
发文量
82
审稿时长
1 months
期刊介绍: Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology. Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as: -Preformulation and pharmaceutical formulation studies -Pharmaceutical materials selection and characterization -Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation -QbD in the form a risk assessment and DoE driven approaches -Design of dosage forms and drug delivery systems -Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies -Drug delivery systems research and quality improvement -Pharmaceutical regulatory affairs This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信