Repairbads: An automatic and adaptive method to repair bad channels and segments for OPM-MEG.

IF 4.7 2区 医学 Q1 NEUROIMAGING
Fulong Wang, Yujie Ma, Tianyu Gao, Yue Tao, Ruonan Wang, Ruochen Zhao, Fuzhi Cao, Yang Gao, Xiaolin Ning
{"title":"Repairbads: An automatic and adaptive method to repair bad channels and segments for OPM-MEG.","authors":"Fulong Wang, Yujie Ma, Tianyu Gao, Yue Tao, Ruonan Wang, Ruochen Zhao, Fuzhi Cao, Yang Gao, Xiaolin Ning","doi":"10.1016/j.neuroimage.2024.120996","DOIUrl":null,"url":null,"abstract":"<p><p>The optically pumped magnetometer (OPM) based magnetoencephalography (MEG) system offers advantages such as flexible layout and wearability. However, the position instability or jitter of OPM sensors can result in bad channels and segments, which significantly impede subsequent preprocessing and analysis. Most common methods directly reject or interpolate to repair these bad channels and segments. Direct rejection leads to data loss, and when the number of sensors is limited, interpolation using neighboring sensors can cause significant signal distortion and cannot repair bad segments present in all channels. Therefore, most existing methods are unsuitable for OPM-MEG systems with fewer channels. We introduce an automatic bad segments and bad channels repair method for OPM-MEG, called Repairbads. This method aims to repair all bad data and reduce signal distortion, especially capable of automatically repairing bad segments present in all channels simultaneously. Repairbads employs Riemannian Potato combined with joint decorrelation to project out artifact components, achieving automatic bad segment repair. Then, an adaptive algorithm is used to segment the signal into relatively stable noise data chunks, and the source-estimate-utilizing noise-discarding algorithm is applied to each chunk to achieve automatic bad channel repair. We compared the performance of Repairbads with the Autoreject method on both simulated and real auditory evoked data, using five evaluation metrics for quantitative assessment. The results demonstrate that Repairbads consistently outperforms across all five metrics. In both simulated and real OPM-MEG data, Repairbads shows better performance than current state-of-the-art methods, reliably repairing bad data with minimal distortion. The automation of this method significantly reduces the burden of manual inspection, promoting the automated processing and clinical application of OPM-MEG.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"306 ","pages":"120996"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2024.120996","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The optically pumped magnetometer (OPM) based magnetoencephalography (MEG) system offers advantages such as flexible layout and wearability. However, the position instability or jitter of OPM sensors can result in bad channels and segments, which significantly impede subsequent preprocessing and analysis. Most common methods directly reject or interpolate to repair these bad channels and segments. Direct rejection leads to data loss, and when the number of sensors is limited, interpolation using neighboring sensors can cause significant signal distortion and cannot repair bad segments present in all channels. Therefore, most existing methods are unsuitable for OPM-MEG systems with fewer channels. We introduce an automatic bad segments and bad channels repair method for OPM-MEG, called Repairbads. This method aims to repair all bad data and reduce signal distortion, especially capable of automatically repairing bad segments present in all channels simultaneously. Repairbads employs Riemannian Potato combined with joint decorrelation to project out artifact components, achieving automatic bad segment repair. Then, an adaptive algorithm is used to segment the signal into relatively stable noise data chunks, and the source-estimate-utilizing noise-discarding algorithm is applied to each chunk to achieve automatic bad channel repair. We compared the performance of Repairbads with the Autoreject method on both simulated and real auditory evoked data, using five evaluation metrics for quantitative assessment. The results demonstrate that Repairbads consistently outperforms across all five metrics. In both simulated and real OPM-MEG data, Repairbads shows better performance than current state-of-the-art methods, reliably repairing bad data with minimal distortion. The automation of this method significantly reduces the burden of manual inspection, promoting the automated processing and clinical application of OPM-MEG.

求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信